Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Breast Cancer Detection and Classification Using Deep CNN Techniques

    R. Rajakumari1,*, L. Kalaivani2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1089-1107, 2022, DOI:10.32604/iasc.2022.020178

    Abstract Breast cancer is a commonly diagnosed disease in women. Early detection, a personalized treatment approach, and better understanding are necessary for cancer patients to survive. In this work, a deep learning network and traditional convolution network were both employed with the Digital Database for Screening Mammography (DDSM) dataset. Breast cancer images were subjected to background removal followed by Wiener filtering and a contrast limited histogram equalization (CLAHE) filter for image restoration. Wavelet packet decomposition (WPD) using the Daubechies wavelet level 3 (db3) was employed to improve the smoothness of the images. For breast cancer recognition,… More >

  • Open Access

    ARTICLE

    A Transfer Learning-Based Approach to Detect Cerebral Microbleeds

    Sitara Afzal, Imran Ullah Khan, Jong Weon Lee*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1903-1923, 2022, DOI:10.32604/cmc.2022.021930

    Abstract Cerebral microbleeds are small chronic vascular diseases that occur because of irregularities in the cerebrum vessels. Individuals and elderly people with brain injury and dementia can have small microbleeds in their brains. A recent study has shown that cerebral microbleeds could be remarkably risky in terms of life and can be riskier for patients with dementia. In this study, we proposed an efficient approach to automatically identify microbleeds by reducing the false positives in openly available susceptibility-weighted imaging (SWI) data samples. The proposed structure comprises two different pre-trained convolutional models with four stages. These stages… More >

  • Open Access

    ARTICLE

    A Lightweight Approach for Skin Lesion Detection Through Optimal Features Fusion

    Khadija Manzoor1, Fiaz Majeed2, Ansar Siddique2, Talha Meraj3, Hafiz Tayyab Rauf4,*, Mohammed A. El-Meligy5, Mohamed Sharaf6, Abd Elatty E. Abd Elgawad6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1617-1630, 2022, DOI:10.32604/cmc.2022.018621

    Abstract Skin diseases effectively influence all parts of life. Early and accurate detection of skin cancer is necessary to avoid significant loss. The manual detection of skin diseases by dermatologists leads to misclassification due to the same intensity and color levels. Therefore, an automated system to identify these skin diseases is required. Few studies on skin disease classification using different techniques have been found. However, previous techniques failed to identify multi-class skin disease images due to their similar appearance. In the proposed study, a computer-aided framework for automatic skin disease detection is presented. In the proposed… More >

  • Open Access

    ARTICLE

    Intelligent and Integrated Framework for Exudate Detection in Retinal Fundus Images

    Muhammad Shujaat1, Numan Aslam1, Iram Noreen1, Muhammad Khurram Ehsan1,*, Muhammad Aasim Qureshi1, Aasim Ali1, Neelma Naz2, Imtisal Qadeer3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 663-672, 2021, DOI:10.32604/iasc.2021.019194

    Abstract Diabetic Retinopathy (DR) is a disease of the retina caused by diabetes. The existence of exudates in the retina is the primary visible sign of DR. Early exudate detection can prevent patients from the severe conditions of DR An intelligent framework is proposed that serves two purposes. First, it highlights the features of exudate from fundus images using an image processing approach. Afterwards, the enhanced features are used as input to train Alexnet for the detection of exudates. The proposed framework is comprised on three stages that include pre-processing, image segmentation, and classification. During the… More >

  • Open Access

    ARTICLE

    DTLM-DBP: Deep Transfer Learning Models for DNA Binding Proteins Identification

    Sara Saber1, Uswah Khairuddin2,*, Rubiyah Yusof2, Ahmed Madani1

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3563-3576, 2021, DOI:10.32604/cmc.2021.017769

    Abstract The identification of DNA binding proteins (DNABPs) is considered a major challenge in genome annotation because they are linked to several important applied and research applications of cellular functions e.g., in the study of the biological, biophysical, and biochemical effects of antibiotics, drugs, and steroids on DNA. This paper presents an efficient approach for DNABPs identification based on deep transfer learning, named “DTLM-DBP.” Two transfer learning methods are used in the identification process. The first is based on the pre-trained deep learning model as a feature’s extractor and classifier. Two different pre-trained Convolutional Neural Networks… More >

Displaying 11-20 on page 2 of 15. Per Page