Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,869)
  • Open Access

    ARTICLE

    A Nonlinear Optimization Algorithm for Lower Bound Limit and Shakedown Analysis

    G. Gang1, Y.H. Liu2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 251-272, 2010, DOI:10.3970/cmc.2010.020.251

    Abstract Limit and shakedown analysis theorems are the theories of classical plasticity for the direct computation of the load-carrying capacity under proportional and varying loads. Based on Melan's theorem, a solution procedure for lower bound limit and shakedown analysis of three-dimensional (3D) structures is established making use of the finite element method (FEM). The self-equilibrium stress fields are expressed by linear combination of several basic self-equilibrium stress fields with parameters to be determined. These basic self-equilibrium stress fields are elastic responses of the body to imposed permanent strains obtained through elastic-plastic incremental analysis by the three-dimensional finite element method (3D-FEM). The… More >

  • Open Access

    ARTICLE

    Stable Boundary and Internal Data Reconstruction in Two-Dimensional Anisotropic Heat Conduction Cauchy Problems Using Relaxation Procedures for an Iterative MFS Algorithm

    Liviu Marin1

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 233-274, 2010, DOI:10.3970/cmc.2010.017.233

    Abstract We investigate two algorithms involving the relaxation of either the given boundary temperatures (Dirichlet data) or the prescribed normal heat fluxes (Neumann data) on the over-specified boundary in the case of the iterative algorithm of Kozlov91 applied to Cauchy problems for two-dimensional steady-state anisotropic heat conduction (the Laplace-Beltrami equation). The two mixed, well-posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV)… More >

  • Open Access

    ARTICLE

    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain theory has been applied to… More >

  • Open Access

    ARTICLE

    Convergence Properties of Genetic Algorithmsin a Wide Variety of Noisy Environments

    TakehikoNakama1

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 35-60, 2009, DOI:10.3970/cmc.2009.014.035

    Abstract Random noise perturbs objective functions in practical optimization problems, and genetic algorithms (GAs) have been proposed as an effective optimization tool for dealing with noisy objective functions. In this paper, we investigate GAs in a variety of noisy environments where fitness perturbation can occur in any form-for example, fitness evaluations can be concurrently disturbed by additive and multiplicative noise. We reveal the convergence properties of GAs by constructing and analyzing a Markov chain that explicitly models the evolution of the algorithms in noisy environments. We compute the one-step transition probabilities of the Markov chain and show that the chain has… More >

  • Open Access

    ARTICLE

    Relaxation of Alternating Iterative Algorithms for the Cauchy Problem Associated with the Modified Helmholtz Equation

    B. Tomas Johansson1, Liviu Marin2

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 153-190, 2009, DOI:10.3970/cmc.2009.013.153

    Abstract We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of Kozlov, Maz'ya and Fomin(1991) applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods. More >

  • Open Access

    ARTICLE

    An Alternating Iterative MFS Algorithm for the Cauchy Problem in Two-Dimensional Anisotropic Heat Conduction

    LiviuMarin 1

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 71-100, 2009, DOI:10.3970/cmc.2009.012.071

    Abstract In this paper, the alternating iterative algorithm originally proposed by Kozlov, Maz'ya and Fomin (1991) is numerically implemented for the Cauchy problem in anisotropic heat conduction using a meshless method. Every iteration of the numerical procedure consists of two mixed, well-posed and direct problems which are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise… More >

  • Open Access

    ARTICLE

    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access

    ARTICLE

    A Matrix Decomposition MFS Algorithm for Biharmonic Problems in Annular Domains

    T. Tsangaris1, Y.–S. Smyrlis1, 2, A. Karageorghis1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 245-258, 2004, DOI:10.3970/cmc.2004.001.245

    Abstract The Method of Fundamental Solutions (MFS) is a boundary-type method for the solution of certain elliptic boundary value problems. In this work, we develop an efficient matrix decomposition MFS algorithm for the solution of biharmonic problems in annular domains. The circulant structure of the matrices involved in the MFS discretization is exploited by using Fast Fourier Transforms. The algorithm is tested numerically on several examples. More >

  • Open Access

    ARTICLE

    An r-h Adaptive Strategy Based On Material Forces and Error Assessment

    R. Gangadharan1, A. Rajagopal1, S.M. Sivakumar1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 229-244, 2004, DOI:10.3970/cmc.2004.001.229

    Abstract A new r-h adaptive scheme is proposed and formulated. It involves a combination of the configurational force based r-adaption with weighted Laplacian smoothing and mesh enrichment by h-refinement. A Zienkiewicz-Zhu best guess stress error estimator is used in the h-refinement strategy. The best sequence for combining the effectiveness of r- and h- adaption has been evolved at in this study. A further reduction in the potential energy and the relative error norm of the system is found to be achieved with combined r-adaption and mesh enrichment (in the form h-refinement). Numerical study confirms that the proposed combined r-h adaption is… More >

Displaying 1861-1870 on page 187 of 1869. Per Page