Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,039)
  • Open Access

    ARTICLE

    Quantitative Assessment of Generative Large Language Models on Design Pattern Application

    Dae-Kyoo Kim*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3843-3872, 2025, DOI:10.32604/cmc.2025.062552 - 06 March 2025

    Abstract Design patterns offer reusable solutions for common software issues, enhancing quality. The advent of generative large language models (LLMs) marks progress in software development, but their efficacy in applying design patterns is not fully assessed. The recent introduction of generative large language models (LLMs) like ChatGPT and CoPilot has demonstrated significant promise in software development. They assist with a variety of tasks including code generation, modeling, bug fixing, and testing, leading to enhanced efficiency and productivity. Although initial uses of these LLMs have had a positive effect on software development, their potential influence on the… More >

  • Open Access

    ARTICLE

    Digital Twin-Driven Modeling and Application of High-Temperature Biaxial Materials Testing Apparatus

    Xiyu Gao, Peng Liu, Anran Zhao, Guotai Huang, Jianhai Zhang, Liming Zhou*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4137-4159, 2025, DOI:10.32604/cmc.2025.060194 - 06 March 2025

    Abstract The High-Temperature Biaxial Testing Apparatus (HTBTA) is a critical tool for studying the damage and failure mechanisms of heat-resistant composite materials under extreme conditions. However, existing methods for managing and monitoring such apparatus face challenges, including limited real-time modeling capabilities, inadequate integration of multi-source data, and inefficiencies in human-machine interaction. To address these gaps, this study proposes a novel digital twin-driven framework for HTBTA, encompassing the design, validation, operation, and maintenance phases. By integrating advanced modeling techniques, such as finite element analysis and Long Short-Term Memory (LSTM) networks, the digital twin enables high-fidelity simulation, real-time… More >

  • Open Access

    ARTICLE

    Utilizing Fine-Tuning of Large Language Models for Generating Synthetic Payloads: Enhancing Web Application Cybersecurity through Innovative Penetration Testing Techniques

    Stefan Ćirković1, Vladimir Mladenović1, Siniša Tomić2, Dalibor Drljača2, Olga Ristić1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4409-4430, 2025, DOI:10.32604/cmc.2025.059696 - 06 March 2025

    Abstract With the increasing use of web applications, challenges in the field of cybersecurity are becoming more complex. This paper explores the application of fine-tuned large language models (LLMs) for the automatic generation of synthetic attacks, including XSS (Cross-Site Scripting), SQL Injections, and Command Injections. A web application has been developed that allows penetration testers to quickly generate high-quality payloads without the need for in-depth knowledge of artificial intelligence. The fine-tuned language model demonstrates the capability to produce synthetic payloads that closely resemble real-world attacks. This approach not only improves the model’s precision and dependability but… More >

  • Open Access

    ARTICLE

    X-OODM: Leveraging Explainable Object-Oriented Design Methodology for Multi-Domain Sentiment Analysis

    Abqa Javed1, Muhammad Shoaib1,*, Abdul Jaleel2, Mohamed Deriche3, Sharjeel Nawaz4

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4977-4994, 2025, DOI:10.32604/cmc.2025.057359 - 06 March 2025

    Abstract Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability, transparency, and trust in the community. Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction. Conventional design methodologies such as object-oriented design methodology (OODM) have been proposed for web-based application development, which facilitates code reuse, quantification, and security at the design level. However, OODM did not provide the feature of explainability in web-based decision-making systems. X-OODM modifies the OODM with added explainable models to introduce the explainability feature for… More >

  • Open Access

    ARTICLE

    Preparation and Application of an Epoxy Soybean Oil-Based Plugging Agent

    Yongming Li, Dingyuan Zhang*, Yadong Chen, Jiandu Ye

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 261-277, 2025, DOI:10.32604/fdmp.2025.060033 - 06 March 2025

    Abstract Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields. However, the widespread use of epoxy resin is constrained by its high cost and non-renewable origin, while plant-based resins often suffer from inadequate mechanical properties, which limit their effectiveness in such applications. This study introduces BEOPA, an innovative, renewable, high-strength resin plugging agent derived from epoxidized soybean oil (ESO) and enhanced with bisphenol A-type benzoxazine (BZ). In this study, the synthesis process, reaction mechanism, and application performance of this novel material are systematically presented, explored and optimized. It is… More >

  • Open Access

    ARTICLE

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

    Ahmed Mohamed Galal1,2, Adebowale Martins Obalalu3, Akintayo Oladimeji Akindele4, Umair Khan5,6, Abdulazeez Adebayo Usman7, Olalekan Adebayo Olayemi8, Najiyah Safwa Khashi’ie9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3089-3113, 2025, DOI:10.32604/cmes.2025.061296 - 03 March 2025

    Abstract The need for efficient thermal energy systems has gained significant attention due to the growing global concern about renewable energy resources, particularly in residential buildings. One of the biggest challenges in this area is capturing and converting solar energy at maximum efficiency. This requires the use of strong materials and advanced fluids to enhance conversion efficiency while minimizing energy losses. Despite extensive research on thermal energy systems, there remains a limited understanding of how the combined effects of thermal radiation, irreversibility processes, and advanced heat flux models contribute to optimizing solar power performance in residential… More > Graphic Abstract

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

  • Open Access

    REVIEW

    Stochastic Fractal Search: A Decade Comprehensive Review on Its Theory, Variants, and Applications

    Mohammed A. El-Shorbagy1, Anas Bouaouda2,*, Laith Abualigah3,4, Fatma A. Hashim5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2339-2404, 2025, DOI:10.32604/cmes.2025.061028 - 03 March 2025

    Abstract With the rapid advancements in technology and science, optimization theory and algorithms have become increasingly important. A wide range of real-world problems is classified as optimization challenges, and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains, such as machine learning, process control, and engineering design, showcasing their capability to address complex optimization problems. The Stochastic Fractal Search (SFS) algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials. Since its introduction by Hamid Salimi in 2015, SFS has garnered significant attention… More >

  • Open Access

    REVIEW

    Smoothed Particle Hydrodynamics (SPH) Simulations of Drop Evaporation: A Comprehensive Overview of Methods and Applications

    Leonardo Di G. Sigalotti*, Carlos A. Vargas

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2281-2337, 2025, DOI:10.32604/cmes.2025.060497 - 03 March 2025

    Abstract The evaporation of micrometer and millimeter liquid drops, involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface, is encountered in many natural and industrial processes as well as in numerous engineering applications. Therefore, understanding and predicting the dynamics of evaporating flows have become of primary importance. Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics (SPH), which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process. This paper aims to provide an overview of… More > Graphic Abstract

    Smoothed Particle Hydrodynamics (SPH) Simulations of Drop Evaporation: A Comprehensive Overview of Methods and Applications

  • Open Access

    ARTICLE

    A Heavy Tailed Model Based on Power XLindley Distribution with Actuarial Data Applications

    Mohammed Elgarhy1, Amal S. Hassan2, Najwan Alsadat3, Oluwafemi Samson Balogun4, Ahmed W. Shawki5, Ibrahim E. Ragab6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2547-2583, 2025, DOI:10.32604/cmes.2025.058362 - 03 March 2025

    Abstract Accurately modeling heavy-tailed data is critical across applied sciences, particularly in finance, medicine, and actuarial analysis. This work presents the heavy-tailed power XLindley distribution (HTPXLD), a unique heavy-tailed distribution. Adding one more parameter to the power XLindley distribution improves this new distribution, especially when modeling leptokurtic lifetime data. The suggested density provides greater flexibility with asymmetric forms and different degrees of peakedness. Its statistical features, like the quantile function, moments, extropy measures, incomplete moments, stochastic ordering, and stress-strength parameters, are explored. We further investigate its use in actuarial science through the computation of pertinent metrics,… More >

  • Open Access

    ARTICLE

    Bayesian Stochastic INLA Application to the SIR-SI Model for Investigating Dengue Transmission Dynamics

    Mukhsar1,*, Andi Tenriawaru2, Gusti Ngurah Adhi Wibawa1, Bahriddin Abapihi1, Sitti Wirdhana Ahmad3, I Putu Sudayasa4

    Intelligent Automation & Soft Computing, Vol.40, pp. 177-193, 2025, DOI:10.32604/iasc.2025.058884 - 24 February 2025

    Abstract Despite extensive prevention efforts and research, dengue hemorrhagic fever (DHF) remains a major public health challenge, particularly in tropical regions, with significant social, economic, and health consequences. Statistical models are crucial in studying infectious DHF by providing a structured framework to analyze transmission dynamics between humans (hosts) and mosquitoes (vectors). Depending on the disease characteristics, different stochastic compartmental models can be employed. This research applies Bayesian Integrated Nested Laplace Approximation (INLA) to the SIR-SI model for DHF data. The method delivers accurate parameter estimates, improved computational efficiency, and effective integration with early warning systems. The… More >

Displaying 1-10 on page 1 of 1039. Per Page