Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (89)
  • Open Access

    ARTICLE

    Attention-Based Bi-LSTM Model for Arabic Depression Classification

    Abdulqader M. Almars*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3091-3106, 2022, DOI:10.32604/cmc.2022.022609 - 07 December 2021

    Abstract Depression is a common mental health issue that affects a large percentage of people all around the world. Usually, people who suffer from this mood disorder have issues such as low concentration, dementia, mood swings, and even suicide. A social media platform like Twitter allows people to communicate as well as share photos and videos that reflect their moods. Therefore, the analysis of social media content provides insight into individual moods, including depression. Several studies have been conducted on depression detection in English and less in Arabic. The detection of depression from Arabic social media… More >

  • Open Access

    ARTICLE

    Twitter Arabic Sentiment Analysis to Detect Depression Using Machine Learning

    Dhiaa A. Musleh, Taef A. Alkhales, Reem A. Almakki*, Shahad E. Alnajim, Shaden K. Almarshad, Rana S. Alhasaniah, Sumayh S. Aljameel, Abdullah A. Almuqhim

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3463-3477, 2022, DOI:10.32604/cmc.2022.022508 - 07 December 2021

    Abstract Depression has been a major global concern for a long time, with the disease affecting aspects of many people's daily lives, such as their moods, eating habits, and social interactions. In Arabic culture, there is a lack of awareness regarding the importance of facing and curing mental health diseases. However, people all over the world, including Arab citizens, tend to express their feelings openly on social media, especially Twitter, as it is a platform designed to enable the expression of emotions through short texts, pictures, or videos. Users are inclined to treat their Twitter accounts… More >

  • Open Access

    ARTICLE

    Arabic Fake News Detection Using Deep Learning

    Khaled M. Fouad1,3, Sahar F. Sabbeh1,2,*, Walaa Medhat1,3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3647-3665, 2022, DOI:10.32604/cmc.2022.021449 - 07 December 2021

    Abstract Nowadays, an unprecedented number of users interact through social media platforms and generate a massive amount of content due to the explosion of online communication. However, because user-generated content is unregulated, it may contain offensive content such as fake news, insults, and harassment phrases. The identification of fake news and rumors and their dissemination on social media has become a critical requirement. They have adverse effects on users, businesses, enterprises, and even political regimes and governments. State of the art has tackled the English language for news and used feature-based algorithms. This paper proposes a… More >

  • Open Access

    ARTICLE

    Curcumin gum Arabic nanoparticles demonstrate potent antioxidant and cytotoxic properties in human cancer cells

    ABDELKADER HASSANI1,2,3, SITI ASLINA HUSSAIN2, MOTHANNA SADIQ AL-QUBAISI4, MOHAMED LAKHDER BELFAR3, HAKIM BELKHALFA5, HAMID HAMMAD ENEZEI6, HAMID ZENTOU2, WISAM NABEEL IBRAHIM7,8,*, ABD ALMONEM DOOLAANEA1,*

    BIOCELL, Vol.46, No.3, pp. 677-687, 2022, DOI:10.32604/biocell.2022.016848 - 18 November 2021

    Abstract The main purpose of the study was to enhance the stability and therapeutic effects of Curcumin (Cur) through nanoformulation with gum Arabic (GA) as a coating agent through an efficient synthetic approach. The antioxidant properties of the developed nanoparticles (Cur/GANPs) were assessed through several in vitro assays, such as β-carotene bleaching activity, DPPH, and nitric oxide scavenging activities in addition to evaluating its inhibitory activity on angiotensin-converting enzyme (ACE). The cytotoxicity of Cur/GANPs was evaluated in vitro using different types of human cancer cells including breast cancer (MCF7, MDA-MB231), liver cancer (HepG2), and colon cancer (HT29) cells. More >

  • Open Access

    ARTICLE

    Deep Learning-Based Approach for Arabic Visual Speech Recognition

    Nadia H. Alsulami1,*, Amani T. Jamal1, Lamiaa A. Elrefaei2

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 85-108, 2022, DOI:10.32604/cmc.2022.019450 - 03 November 2021

    Abstract Lip-reading technologies are rapidly progressing following the breakthrough of deep learning. It plays a vital role in its many applications, such as: human-machine communication practices or security applications. In this paper, we propose to develop an effective lip-reading recognition model for Arabic visual speech recognition by implementing deep learning algorithms. The Arabic visual datasets that have been collected contains 2400 records of Arabic digits and 960 records of Arabic phrases from 24 native speakers. The primary purpose is to provide a high-performance model in terms of enhancing the preprocessing phase. Firstly, we extract keyframes from… More >

  • Open Access

    ARTICLE

    Consensus-Based Ensemble Model for Arabic Cyberbullying Detection

    Asma A. Alhashmi*, Abdulbasit A. Darem

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 241-254, 2022, DOI:10.32604/csse.2022.020023 - 08 October 2021

    Abstract Due to the proliferation of internet-enabled smartphones, many people, particularly young people in Arabic society, have widely adopted social media platforms as a primary means of communication, interaction and friendship making. The technological advances in smartphones and communication have enabled young people to keep in touch and form huge social networks from all over the world. However, such networks expose young people to cyberbullying and offensive content that puts their safety and emotional well-being at serious risk. Although, many solutions have been proposed to automatically detect cyberbullying, most of the existing solutions have been designed… More >

  • Open Access

    ARTICLE

    Securing Arabic Contents Algorithm for Smart Detecting of Illegal Tampering Attacks

    Mesfer Al Duhayyim1, Manal Abdullah Alohali2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5,*, Mohammad Medani3, Manar Ahmed Hamza5

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2879-2894, 2022, DOI:10.32604/cmc.2022.019594 - 27 September 2021

    Abstract The most common digital media exchanged via the Internet is in text form. The Arabic language is considered one of the most sensitive languages of content modification due to the presence of diacritics that can cause a change in the meaning. In this paper, an intelligent scheme is proposed for improving the reliability and security of the text exchanged via the Internet. The core mechanism of the proposed scheme depends on integrating the hidden Markov model and zero text watermarking techniques. The watermark key will be generated by utilizing the extracted features of the text More >

  • Open Access

    ARTICLE

    Usability and Security of Arabic Text-based CAPTCHA Using Visual Cryptography

    Suliman A. Alsuhibany*, Meznah Alquraishi

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 421-440, 2022, DOI:10.32604/csse.2022.018929 - 09 September 2021

    Abstract Recently, with the spread of online services involving websites, attackers have the opportunity to expose these services to malicious actions. To protect these services, A Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA) is a proposed technique. Since many Arabic countries have developed their online services in Arabic, Arabic text-based CAPTCHA has been introduced to improve the usability for their users. Moreover, there exist a visual cryptography (VC) technique which can be exploited in order to enhance the security of text-based CAPTCHA by encrypting a CAPTCHA image into two shares and More >

  • Open Access

    ARTICLE

    A Parametric Study of Arabic Text-Based CAPTCHA Difficulty for Humans

    Suliman A. Alsuhibany*, Hessah Abdulaziz Alhodathi

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 523-537, 2022, DOI:10.32604/iasc.2022.019913 - 03 September 2021

    Abstract The Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) technique has been an interesting topic for several years. An Arabic CAPTCHA has recently been proposed to serve Arab users. Since there have been few scientific studies supporting a systematic design or tuning for users, this paper aims to analyze the Arabic text-based CAPTCHA at the parameter level by conducting an experimental study. Based on the results of this study, we propose an Arabic text-based CAPTCHA scheme with Fast Gradient Sign Method (FGSM) adversarial images. To evaluate the security of the proposed More >

  • Open Access

    ARTICLE

    Swarming Behavior of Harris Hawks Optimizer for Arabic Opinion Mining

    Diaa Salam Abd Elminaam1,2,*, Nabil Neggaz3, Ibrahim Abdulatief Ahmed4,5, Ahmed El Sawy Abouelyazed4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4129-4149, 2021, DOI:10.32604/cmc.2021.019047 - 24 August 2021

    Abstract At present, the immense development of social networks allows generating a significant amount of textual data, which has facilitated researchers to explore the field of opinion mining. In addition, the processing of textual opinions based on the term frequency-inverse document frequency method gives rise to a dimensionality problem. This study aims to detect the nature of opinions in the Arabic language employing a swarm intelligence (SI)-based algorithm, Harris hawks algorithm, to select the most relevant terms. The experimental study has been tested on two datasets: Arabic Jordanian General Tweets and Opinion Corpus for Arabic. In More >

Displaying 61-70 on page 7 of 89. Per Page