Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Arbuscular Mycorrhizal Fungi Alleviates Salt-Alkali Stress Demage on Syneilesis aconitifolia

    Linlin Fang, Jiamei Xu, Chunxue Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3195-3209, 2023, DOI:10.32604/phyton.2023.043049

    Abstract Syneilesis aconitifolia is a potential ground cover and decorative material in gardens, which exhibits a strong salt-alkali tolerance, and also has medicinal value. In this study, the arbuscular mycorrhizal (AM) fungi community in the soil surrounding S. aconitifolia roots in the Songnen saline-alkali grassland was used as the inoculation medium for a pot cultivation experiment. After normal culture for 90 days, NaCl and NaHCO3 solutions were applied to subject plants to salt or alkali stress. Solution concentrations of 50, 100, and 200 mmol/L were applied for 10 days, and mycorrhizal colonization, biomass, relative water content (RWC), chlorophyll concentration, malondialdehyde (MDA)… More >

  • Open Access

    ARTICLE

    The Application of Fertilizer and AMF Promotes Growth and Reduces the Cadmium and Lead Contents of Ryegrass (Lolium multiflorum L.) in a Copper Mining Area

    Jiaxin Chen1,#, Jiawei Guo1,#, Zhixin Yang1, Jiqing Yang2,*, Hengwen Dong3, Huiyun Wang3, Yalei Wang3, Fangdong Zhan1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 471-485, 2023, DOI:10.32604/phyton.2022.023660

    Abstract Heavy metal-polluted soil was collected from the Pulang copper mine in Shangri-La City, Yunnan Province, Southwest China. The effects of fertilizer (organic and inorganic) and arbuscular mycorrhizal fungi (AMF) on ryegrass (Lolium multiflorum L.) growth, root morphology, mineral nutrition and cadmium (Cd) and lead (Pb) contents were investigated by pot experiments. The results showed that both fertilizer and AMF significantly ameliorated the root morphology and mineral nutrition, reduced the Cd and Pb contents, and promoted the growth of ryegrass. Among all treatments, the combined application of organic–inorganic compound fertilizer with AMF had the highest effect, resulting in increases in root… More >

  • Open Access

    ARTICLE

    Effects of Different Arbuscular Mycorrhizal Fungi on Physiology of Viola prionantha under Salt Stress

    Yajie Liu, Linlin Fang, Wenna Zhao, Chunxue Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 55-69, 2023, DOI:10.32604/phyton.2022.022159

    Abstract Arbuscular mycorrhizal (AM) fungi distribute widely in natural habits and play a variety of ecological functions. In order to test the physiological response to salt stress mediated by different AM fungi, Viola prionantha was selected as the host, the dominant AM fungus in the rhizosphere of V. philippica growing in Songnen saline-alkali grassland, Rhizophagus irregularis, and their mixtures were used as inoculants, and NaCl stress was applied after the roots were colonized. The results showed that V. philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33% to 96.67%, and Claroideoglomus etunicatum was… More >

  • Open Access

    REVIEW

    Advances in the studies on symbiotic arbuscular mycorrhizal fungi of traditional Chinese medicinal plants

    LIMIN YU1,2, ZHONGFENG ZHANG2,*, LONGWU ZHOU2

    BIOCELL, Vol.46, No.12, pp. 2559-2573, 2022, DOI:10.32604/biocell.2022.022825

    Abstract

    Arbuscular mycorrhizal (AM) fungi reside in the rhizosphere and form mutualistic associations with plant roots. They promote photosynthesis, improve stress resistance, and induce secondary metabolite biosynthesis in host medicinal plants. The AM fungi that are symbiotic with medicinal plants comprise a wide array of species and have abundant germplasm resources. Though research on the AM fungi in medicinal plants began relatively recently, it has nonetheless become an investigative hot spot. Several scholars have explored the diversity and the growth-promoting effects of mycorrhizal fungi in hundreds of medicinal plants. Current research on symbiotic AM fungi in medicinal plants has focused mainly… More >

  • Open Access

    ARTICLE

    Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions

    WEI ZHOU, MENGMENG ZHANG, KEZHANG TAO, XIANCAN ZHU*

    BIOCELL, Vol.46, No.12, pp. 2575-2582, 2022, DOI:10.32604/biocell.2022.021910

    Abstract Land salinization is a major form of land degradation, which is not conducive to the growth and quality of fruits and vegetables. Plant salt tolerance can be enhanced by arbuscular mycorrhizal fungi (AMF) or plant growth-promoting rhizobacteria (PGPR). This study examined the effects of inoculation with PGPR singly or in combination with AMF, on the growth and quality of tomato fruits under low saline conditions. Tomatoes were cultivated in a greenhouse with sterilized soil, inoculated with PGPR, AMF, or co-inoculated with PGPR and AMF, and NaCl solution (1%) was added to the soil. The results indicated that AMF + PGPR… More >

  • Open Access

    ARTICLE

    Isolation and species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Puccinellia tenuiflora of Songnen saline-alkaline grassland, China

    YUNHUI ZHOU, YAJIE LIU, WENNA ZHAO, FEI CHEN, YUDAN WANG, CHUNXUE YANG

    BIOCELL, Vol.46, No.11, pp. 2465-2474, 2022, DOI:10.32604/biocell.2022.021016

    Abstract Salinization has led to the deterioration of the ecological environment, affected the growth of plants, and hindered the development of agriculture and forestry. Arbuscular mycorrhizal (AM) fungi, as important soil microorganisms, play significant physiological and ecological roles in promoting plant nutrient absorption and improving soil structure. Puccinellia tenuiflora (Turcz.) Scribn. et Merr. in Songnen saline-alkaline grassland was selected as the research object to observe AM fungal colonization of the roots and explore the species and diversity of AM fungi in symbiotic association with P. tenuiflora. This study showed that AM fungi colonized in P. tenuiflora roots and formed a typical… More >

  • Open Access

    ARTICLE

    Claroideoglomus etunicatum improved the growth and saline– alkaline tolerance of Potentilla anserina by altering physiological and biochemical properties

    YUNHUI ZHOU, YAJIE LIU, YUDAN WANG, CHUNXUE YANG*

    BIOCELL, Vol.46, No.8, pp. 1967-1978, 2022, DOI:10.32604/biocell.2022.019304

    Abstract To investigate the effects of arbuscular mycorrhizal (AM) fungi on the growth and saline–alkaline tolerance of Potentilla anserina L., the seedlings were inoculated with Claroideoglomus etunicatum (W.N. Becker & Gerd.) C. Walker & A. Schüßler in pot cultivation. After 90 days of culture, saline–alkaline stress was induced with NaCl and NaHCO3 solution according to the main salt components in saline–alkaline soils. Based on the physiological response of P. anserina to the stress in the preliminary experiment, the solution concentrations of 0 mmol/L, 75 mmol/L, 150 mmol/L, 225 mmol/L and 300 mmol/L were treated with stress for 10 days, respectively. The… More >

  • Open Access

    ARTICLE

    Mycorrhiza improves plant growth and photosynthetic characteristics of tea plants in response to drought stress

    FENGJUN DAI1, ZIYI RONG1, QIANGSHENG WU1, ELSAYED FATHI ABD_ALLAH3, CHUNYAN LIU1,2,*, SHENGRUI LIU2,*

    BIOCELL, Vol.46, No.5, pp. 1339-1346, 2022, DOI:10.32604/biocell.2022.018909

    Abstract Tea plants are sensitive to soil moisture deficit, with the level of soil water being a critical factor affecting their growth and quality. Arbuscular mycorrhizal fungi (AMF) can improve water and nutrient absorption, but it is not clear whether AMF can improve the photosynthetic characteristics of tea plants. A potted study was conducted to determine the effects of Claroideoglomus etunicatum on plant growth, leaf water status, pigment content, gas exchange, and chlorophyll fluorescence parameters in Camellia sinensis cv. Fuding Dabaicha under well-watered (WW) and drought stress (DS) conditions. Root mycorrhizal colonization and soil hyphal length were significantly reduced by the… More >

  • Open Access

    ARTICLE

    Mycorrhizas Affect Polyphyllin Accumulation of Paris polyphylla var. yunnanensis through Promoting PpSE Expression

    Hailing Li1,2, Lingfeng Xu1, Zhuowei Li1, Shunxin Zhao1, Dongqin Guo1, Lu Rui1,*, Nong Zhou1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1535-1547, 2021, DOI:10.32604/phyton.2021.015697

    Abstract Paris polyphylla var. yunnanensis is a traditional Chinese medicinal plant, in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity. Arbuscular mycorrhizal fungi (AMF) have multiple positive effects on plants, while it is not clear whether AMF increase the content of medicinal components in medicinal plants. In this study, a total of nine AMF treatments were laid to analyze the mycorrhizal effect on polyphyllin accumulation and PpHMGR and PpSE expression of P. polyphylla var. yunnanensis. AMF increased the content of polyphyllin in the cultivated variety with low relation to the increase of inoculation intensity. Polyphyllin… More >

  • Open Access

    ARTICLE

    Colonization Characteristics and Diversity of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Iris lactea in Songnen Saline-alkaline Grassland

    Chunxue Yang*, Yajie Liu, Wenna Zhao, Na Wang

    Phyton-International Journal of Experimental Botany, Vol.90, No.3, pp. 719-729, 2021, DOI:10.32604/phyton.2021.015024

    Abstract To understand arbuscular mycorrhizal (AM) fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances, Iris lactea, which grows in the Songnen saline-alkaline grassland with a high ornamental value, was selected as the experimental material, and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored. The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I. lactea and formed Arum-type mycorrhizal structures. There was a significant correlation between soil spore density and pH value, while the colonization rate showed… More >

Displaying 1-10 on page 1 of 16. Per Page