Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Hybrid Framework Integrating Deterministic Clustering, Neural Networks, and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network

    Muhammad Salman Qamar1,*, Muhammad Fahad Munir2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5463-5485, 2025, DOI:10.32604/cmc.2025.064442 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using More >

  • Open Access

    ARTICLE

    A Novel Approach to Energy Optimization: Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN

    Muhammad Salman Qamar1,*, Ihsan ul Haq1, Amil Daraz2, Atif M. Alamri3, Salman A. AlQahtani4, Muhammad Fahad Munir1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2945-2970, 2024, DOI:10.32604/cmc.2024.050168 - 15 May 2024

    Abstract In pursuit of enhancing the Wireless Sensor Networks (WSNs) energy efficiency and operational lifespan, this paper delves into the domain of energy-efficient routing protocols. In WSNs, the limited energy resources of Sensor Nodes (SNs) are a big challenge for ensuring their efficient and reliable operation. WSN data gathering involves the utilization of a mobile sink (MS) to mitigate the energy consumption problem through periodic network traversal. The mobile sink (MS) strategy minimizes energy consumption and latency by visiting the fewest nodes or pre-determined locations called rendezvous points (RPs) instead of all cluster heads (CHs). CHs… More >

Displaying 1-10 on page 1 of 2. Per Page