Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ARTICLE

    A Comparative Benchmark of Machine and Deep Learning for Cyberattack Detection in IoT Networks

    Enzo Hoummady*, Fehmi Jaafar

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074897 - 10 February 2026

    Abstract With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML) and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random Forest, XGBoost, CNN, and Stacked LSTM. The… More >

  • Open Access

    REVIEW

    Recent Advances in Deep-Learning Side-Channel Attacks on AES Implementations

    Junnian Wang1, Xiaoxia Wang1, Zexin Luo1, Qixiang Ouyang1, Chao Zhou1, Huanyu Wang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074473 - 10 February 2026

    Abstract Internet of Things (IoTs) devices are bringing about a revolutionary change our society by enabling connectivity regardless of time and location. However, The extensive deployment of these devices also makes them attractive victims for the malicious actions of adversaries. Within the spectrum of existing threats, Side-Channel Attacks (SCAs) have established themselves as an effective way to compromise cryptographic implementations. These attacks exploit unintended, unintended physical leakage that occurs during the cryptographic execution of devices, bypassing the theoretical strength of the crypto design. In recent times, the advancement of deep learning has provided SCAs with a… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating Cyberattacks on Load Frequency Control with Battery Energy Storage System

    Yunhao Yu1, Fuhua Luo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074277 - 10 February 2026

    Abstract This paper investigates the detection and mitigation of coordinated cyberattacks on Load Frequency Control (LFC) systems integrated with Battery Energy Storage Systems (BESS). As renewable energy sources gain greater penetration, power grids are becoming increasingly vulnerable to cyber threats, potentially leading to frequency instability and widespread disruptions. We model two significant attack vectors: load-altering attacks (LAAs) and false data injection attacks (FDIAs) that corrupt frequency measurements. These are analyzed for their impact on grid frequency stability in both linear and nonlinear LFC models, incorporating generation rate constraints and nonlinear loads. A coordinated attack strategy is… More >

  • Open Access

    REVIEW

    Prompt Injection Attacks on Large Language Models: A Survey of Attack Methods, Root Causes, and Defense Strategies

    Tongcheng Geng1,#, Zhiyuan Xu2,#, Yubin Qu3,*, W. Eric Wong4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074081 - 10 February 2026

    Abstract Large language models (LLMs) have revolutionized AI applications across diverse domains. However, their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses More >

  • Open Access

    ARTICLE

    Enhancing Detection of AI-Generated Text: A Retrieval-Augmented Dual-Driven Defense Mechanism

    Xiaoyu Li1,2, Jie Zhang3, Wen Shi1,2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074005 - 10 February 2026

    Abstract The emergence of large language models (LLMs) has brought about revolutionary social value. However, concerns have arisen regarding the generation of deceptive content by LLMs and their potential for misuse. Consequently, a crucial research question arises: How can we differentiate between AI-generated and human-authored text? Existing detectors face some challenges, such as operating as black boxes, relying on supervised training, and being vulnerable to manipulation and misinformation. To tackle these challenges, we propose an innovative unsupervised white-box detection method that utilizes a “dual-driven verification mechanism” to achieve high-performance detection, even in the presence of obfuscated… More >

  • Open Access

    ARTICLE

    AFI: Blackbox Backdoor Detection Method Based on Adaptive Feature Injection

    Simin Tang1,2,3,4, Zhiyong Zhang1,2,3,4,*, Junyan Pan1,2,3,4, Gaoyuan Quan1,2,3,4, Weiguo Wang5, Junchang Jing6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073798 - 10 February 2026

    Abstract At inference time, deep neural networks are susceptible to backdoor attacks, which can produce attacker-controlled outputs when inputs contain carefully crafted triggers. Existing defense methods often focus on specific attack types or incur high costs, such as data cleaning or model fine-tuning. In contrast, we argue that it is possible to achieve effective and generalizable defense without removing triggers or incurring high model-cleaning costs. From the attacker’s perspective and based on characteristics of vulnerable neuron activation anomalies, we propose an Adaptive Feature Injection (AFI) method for black-box backdoor detection. AFI employs a pre-trained image encoder… More >

  • Open Access

    ARTICLE

    A Multi-Scale Graph Neural Networks Ensemble Approach for Enhanced DDoS Detection

    Noor Mueen Mohammed Ali Hayder1,2, Seyed Amin Hosseini Seno2,*, Hamid Noori2, Davood Zabihzadeh3, Mehdi Ebady Manaa4,5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073236 - 10 February 2026

    Abstract Distributed Denial of Service (DDoS) attacks are one of the severe threats to network infrastructure, sometimes bypassing traditional diagnosis algorithms because of their evolving complexity. Present Machine Learning (ML) techniques for DDoS attack diagnosis normally apply network traffic statistical features such as packet sizes and inter-arrival times. However, such techniques sometimes fail to capture complicated relations among various traffic flows. In this paper, we present a new multi-scale ensemble strategy given the Graph Neural Networks (GNNs) for improving DDoS detection. Our technique divides traffic into macro- and micro-level elements, letting various GNN models to get… More >

  • Open Access

    ARTICLE

    AdvYOLO: An Improved Cross-Conv-Block Feature Fusion-Based YOLO Network for Transferable Adversarial Attacks on ORSIs Object Detection

    Leyu Dai1,2,3, Jindong Wang1,2,3, Ming Zhou1,2,3, Song Guo1,2,3, Hengwei Zhang1,2,3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072449 - 10 February 2026

    Abstract In recent years, with the rapid advancement of artificial intelligence, object detection algorithms have made significant strides in accuracy and computational efficiency. Notably, research and applications of Anchor-Free models have opened new avenues for real-time target detection in optical remote sensing images (ORSIs). However, in the realm of adversarial attacks, developing adversarial techniques tailored to Anchor-Free models remains challenging. Adversarial examples generated based on Anchor-Based models often exhibit poor transferability to these new model architectures. Furthermore, the growing diversity of Anchor-Free models poses additional hurdles to achieving robust transferability of adversarial attacks. This study presents… More >

  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

Displaying 1-10 on page 1 of 225. Per Page