Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Automated Autism Spectral Disorder Classification Using Optimal Machine Learning Model

    Hanan Abdullah Mengash1, Hamed Alqahtani2, Mohammed Maray3, Mohamed K. Nour4, Radwa Marzouk1, Mohammed Abdullah Al-Hagery5, Heba Mohsen6, Mesfer Al Duhayyim7,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5251-5265, 2023, DOI:10.32604/cmc.2023.032729

    Abstract Autism Spectrum Disorder (ASD) refers to a neuro-disorder where an individual has long-lasting effects on communication and interaction with others. Advanced information technology which employs artificial intelligence (AI) model has assisted in early identify ASD by using pattern detection. Recent advances of AI models assist in the automated identification and classification of ASD, which helps to reduce the severity of the disease. This study introduces an automated ASD classification using owl search algorithm with machine learning (ASDC-OSAML) model. The proposed ASDC-OSAML model majorly focuses on the identification and classification of ASD. To attain this, the More >

  • Open Access

    ARTICLE

    Jellyfish Search Optimization with Deep Learning Driven Autism Spectrum Disorder Classification

    S. Rama Sree1, Inderjeet Kaur2, Alexey Tikhonov3, E. Laxmi Lydia4, Ahmed A. Thabit5, Zahraa H. Kareem6, Yousif Kerrar Yousif7, Ahmed Alkhayyat8,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2195-2209, 2023, DOI:10.32604/cmc.2023.032586

    Abstract Autism spectrum disorder (ASD) is regarded as a neurological disorder well-defined by a specific set of problems associated with social skills, recurrent conduct, and communication. Identifying ASD as soon as possible is favourable due to prior identification of ASD permits prompt interferences in children with ASD. Recognition of ASD related to objective pathogenic mutation screening is the initial step against prior intervention and efficient treatment of children who were affected. Nowadays, healthcare and machine learning (ML) industries are combined for determining the existence of various diseases. This article devises a Jellyfish Search Optimization with Deep… More >

  • Open Access

    ARTICLE

    Modeling of Explainable Artificial Intelligence for Biomedical Mental Disorder Diagnosis

    Anwer Mustafa Hilal1, Imène ISSAOUI2, Marwa Obayya3, Fahd N. Al-Wesabi4, Nadhem NEMRI5, Manar Ahmed Hamza1,*, Mesfer Al Duhayyim6, Abu Sarwar Zamani1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3853-3867, 2022, DOI:10.32604/cmc.2022.022663

    Abstract The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, More >

Displaying 1-10 on page 1 of 3. Per Page