Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

    Anandhavalli Muniasamy1,*, Ashwag Alasmari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 569-592, 2025, DOI:10.32604/cmes.2025.060484 - 11 April 2025

    Abstract The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients. Today, the mass disease that needs attention in this context is cataracts. Although deep learning has significantly advanced the analysis of ocular disease images, there is a need for a probabilistic model to generate the distributions of potential outcomes and thus make decisions related to uncertainty quantification. Therefore, this study implements a Bayesian Convolutional Neural Networks (BCNN) model for predicting cataracts by assigning probability values to the predictions. It prepares convolutional neural network (CNN) and BCNN models. More > Graphic Abstract

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

  • Open Access

    ARTICLE

    Fine-grained Ship Image Recognition Based on BCNN with Inception and AM-Softmax

    Zhilin Zhang1, Ting Zhang1, Zhaoying Liu1,*, Peijie Zhang1, Shanshan Tu1, Yujian Li2, Muhammad Waqas3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1527-1539, 2022, DOI:10.32604/cmc.2022.029297 - 18 May 2022

    Abstract The fine-grained ship image recognition task aims to identify various classes of ships. However, small inter-class, large intra-class differences between ships, and lacking of training samples are the reasons that make the task difficult. Therefore, to enhance the accuracy of the fine-grained ship image recognition, we design a fine-grained ship image recognition network based on bilinear convolutional neural network (BCNN) with Inception and additive margin Softmax (AM-Softmax). This network improves the BCNN in two aspects. Firstly, by introducing Inception branches to the BCNN network, it is helpful to enhance the ability of extracting comprehensive features… More >

Displaying 1-10 on page 1 of 2. Per Page