Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,184)
  • Open Access

    ARTICLE

    A Novel Approach to Modeling of Interfacial Fiber/Matrix Cyclic Debonding

    Paria Naghipour1, Evan J. Pineda2, Steven M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 17-33, 2013, DOI:10.3970/cmc.2013.035.017

    Abstract The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses with applied load cycles was achieved via progressive evolution of the interfacial compliance A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained… More >

  • Open Access

    ARTICLE

    Identification of Parameters of a Nonlinear Material Model Considering the Effects of Viscoelasticity and Damage

    Jan Heczko1, Radek Kottner2, Tomáš Kroupa2

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 257-273, 2013, DOI:10.3970/cmc.2013.033.257

    Abstract This work deals with mechanical properties of a rubber material that is used in modern tram wheels as a damping element. Nonlinear static response as well as strain softening and hysteresis are captured in the material model that is selected. Method of identification of the model's parameters is developed. The identification method relies on successive minimizations with respect to different sets of parameters. Tests in tension, compression and simple shear are performed. Parameters of the material model are identified based on the tension and compression data, while the shear data are used for validation only. More >

  • Open Access

    ARTICLE

    Effect of Interface Energy on Size-Dependent Effective Dynamic Properties of Nanocomposites with Coated Nano-Fibers

    Xue-Qian Fang1,2, Ming-Juan Huang1, Jun-Ying Wu3, Guo-Quan Nie1, Jin-Xi Liu1

    CMC-Computers, Materials & Continua, Vol.33, No.2, pp. 199-211, 2013, DOI:10.3970/cmc.2013.033.199

    Abstract In nanocomposites, coated nano-fibers are often used to obtain good performance, and the high interface-to-volume ratio shows great effect on the macroscopic effective properties of nanocomposites. In this study, the effect of interface energy around the unidirectional coated nanofibers on the effective dynamic effective properties is explicitly addressed by effective medium method and wave function expansion method. The multiple scattering resulting from the series coating nano-fibers is reduced to the problem of one typical nano-fiber in the effective medium. The dynamic effective shear modulus is obtained on the basis of the derived imperfect interface conditions. Analyses show that the effect… More >

  • Open Access

    ARTICLE

    Estimation of the Residual Stiffness of Fire-Damaged Concrete Members

    J.M. Zhu1, X.C. Wang1, D. Wei2, Y.H. Liu2, B.Y. Xu2

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 261-274, 2011, DOI:10.3970/cmc.2011.022.261

    Abstract The residual stiffness of concrete member after fire is a very important parameter of the load-bearing ability and seismic performance of fire-damaged concrete structures. It is also one of the most important criteria for repairing and reinforcing the fire-damaged concrete structures. Based on the equivalent elastic modulus method, improved segment model method and parameter inversion method developed in this paper, the residual stiffness of concrete members exposed to standard fire is calculated and the effects of fire duration, steel ratio and section size on the stiffness are also presented in detail. The results show that these three methods can easily… More >

  • Open Access

    ARTICLE

    Stress Distribution in an Infinite Body Containing Two Neighboring Locally Curved Nanofibers

    Surkay D. Akbarov1,2, Resat Kosker3, Nihan T. Cinar3

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 119-146, 2011, DOI:10.3970/cmc.2011.021.119

    Abstract In the present paper, the stress distribution in an infinite elastic body containing two neighboring nanofibers is studied. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the co-phase and anti-phase curving cases are considered. At infinity uniformly distributed normal forces act in the direction of the nanofibers, location. The investigations are carried out in the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity. The normal and shear self-equilibrated… More >

  • Open Access

    ARTICLE

    The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers

    Surkay D. Akbarov1,2, Resat Kosker3, Yasemen Ucan3

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 77-102, 2010, DOI:10.3970/cmc.2010.017.077

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity, the method for determination of the stress-strain state in the infinite body containing periodically located row of periodically curved fibers is developed. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the sinphase and antiphase curving cases are considered. Numerical results on the effect of the geometrical non-linearity to the values of the self balanced shear and normal stresses… More >

  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the commercial finite element program Abaqus.… More >

  • Open Access

    ARTICLE

    Interval-Based Uncertain Multi-Objective Optimization Design of Vehicle Crashworthiness

    F.Y.Li1,2, G.Y.Li1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 199-220, 2010, DOI:10.3970/cmc.2010.015.199

    Abstract In this paper, an uncertain multi-objective optimization method is suggested to deal with crashworthiness design problem of vehicle, in which the uncertainties of the parameters are described by intervals. Considering both lightweight and safety performance, structural weight and peak acceleration are selected as objectives. The occupant distance is treated as constraint. Based on interval number programming method, the uncertain optimization problem is transformed into a deterministic optimization problem. The approximation models are constructed for objective functions and constraint based on Latin Hypercube Design (LHD). Thus, the interval number programming method is combined with the approximation model to solve the uncertain… More >

  • Open Access

    ARTICLE

    A Phenomenological Model for Desorption in Polymers

    J.A.Ferreira1,2, P. de Oliveira2, P. da Silva3, D. M. G. Comissiong4

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 17-48, 2009, DOI:10.3970/cmc.2009.013.017

    Abstract A phenomenological formulation is adopted to investigate desorption in polymers. The speed of the front is studied and the well-posedness of the general model is analyzed. Numerical simulations illustrating the dynamics of the desorption process described by the proposed model are included. More >

  • Open Access

    ARTICLE

    A Computational Approach to Investigate Electromagnetic Shielding Effectiveness of Steel Fiber-Reinforced Mortar

    S.H. Kwon1, H.K. Lee2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 197-222, 2009, DOI:10.3970/cmc.2009.012.197

    Abstract The electromagnetic shielding effectiveness of steel fiber-reinforced mortar was numerically examined in this study. A series of numerical analysis on twenty-seven types of specimens of different diameters, lengths, and volume fractions of fibers were conducted using the FE program HFSS to investigate the effect of the dimensions of steel fibers and the amount of fibers added to the mortar on the shielding effectiveness. S-parameters of some specimens were experimentally measured by the free space method and the experimentally measured S-parameters were compared with those computed in order to verify the present numerical analysis method. It was found that smaller diameters… More >

Displaying 1171-1180 on page 118 of 1184. Per Page