Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,678)
  • Open Access

    ARTICLE

    Enhancing Anomaly Detection with Causal Reasoning and Semantic Guidance

    Weishan Gao1,2, Ye Wang1,2, Xiaoyin Wang1,2, Xiaochuan Jing1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073850 - 12 January 2026

    Abstract In the field of intelligent surveillance, weakly supervised video anomaly detection (WSVAD) has garnered widespread attention as a key technology that identifies anomalous events using only video-level labels. Although multiple instance learning (MIL) has dominated the WSVAD for a long time, its reliance solely on video-level labels without semantic grounding hinders a fine-grained understanding of visually similar yet semantically distinct events. In addition, insufficient temporal modeling obscures causal relationships between events, making anomaly decisions reactive rather than reasoning-based. To overcome the limitations above, this paper proposes an adaptive knowledge-based guidance method that integrates external structured… More >

  • Open Access

    ARTICLE

    LUAR: Lightweight and Universal Attribute Revocation Mechanism with SGX Assistance towards Applicable ABE Systems

    Fei Tang1,*, Ping Wang1, Jiang Yu1, Huihui Zhu1, Mengxue Qin1, Ling Yang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073423 - 12 January 2026

    Abstract Attribute-Based Encryption (ABE) has emerged as a fundamental access control mechanism in data sharing, enabling data owners to define flexible access policies. A critical aspect of ABE is key revocation, which plays a pivotal role in maintaining security. However, existing key revocation mechanisms face two major challenges: (1) High overhead due to ciphertext and key updates, primarily stemming from the reliance on revocation lists during attribute revocation, which increases computation and communication costs. (2) Limited universality, as many attribute revocation mechanisms are tailored to specific ABE constructions, restricting their broader applicability. To address these challenges,… More >

  • Open Access

    ARTICLE

    IoT-Assisted Cloud Data Sharing with Revocation and Equality Test under Identity-Based Proxy Re-Encryption

    Han-Yu Lin, Tung-Tso Tsai*, Yi-Chuan Wang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073234 - 12 January 2026

    Abstract Cloud services, favored by many enterprises due to their high flexibility and easy operation, are widely used for data storage and processing. However, the high latency, together with transmission overheads of the cloud architecture, makes it difficult to quickly respond to the demands of IoT applications and local computation. To make up for these deficiencies in the cloud, fog computing has emerged as a critical role in the IoT applications. It decentralizes the computing power to various lower nodes close to data sources, so as to achieve the goal of low latency and distributed processing.… More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    FAIR-DQL: Fairness-Aware Deep Q-Learning for Enhanced Resource Allocation and RIS Optimization in High-Altitude Platform Networks

    Muhammad Ejaz1, Muhammad Asim2,*, Mudasir Ahmad Wani2,3, Kashish Ara Shakil4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072464 - 12 January 2026

    Abstract The integration of High-Altitude Platform Stations (HAPS) with Reconfigurable Intelligent Surfaces (RIS) represents a critical advancement for next-generation wireless networks, offering unprecedented opportunities for ubiquitous connectivity. However, existing research reveals significant gaps in dynamic resource allocation, joint optimization, and equitable service provisioning under varying channel conditions, limiting practical deployment of these technologies. This paper addresses these challenges by proposing a novel Fairness-Aware Deep Q-Learning (FAIR-DQL) framework for joint resource management and phase configuration in HAPS-RIS systems. Our methodology employs a comprehensive three-tier algorithmic architecture integrating adaptive power control, priority-based user scheduling, and dynamic learning mechanisms. More >

  • Open Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026

    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open Access

    ARTICLE

    Graph Guide Diffusion Solvers with Noises for Travelling Salesman Problem

    Yan Kong1, Xinpeng Guo2, Chih-Hsien Hsia3,4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071269 - 12 January 2026

    Abstract With the development of technology, diffusion model-based solvers have shown significant promise in solving Combinatorial Optimization (CO) problems, particularly in tackling Non-deterministic Polynomial-time hard (NP-hard) problems such as the Traveling Salesman Problem (TSP). However, existing diffusion model-based solvers typically employ a fixed, uniform noise schedule (e.g., linear or cosine annealing) across all training instances, failing to fully account for the unique characteristics of each problem instance. To address this challenge, we present Graph-Guided Diffusion Solvers (GGDS), an enhanced method for improving graph-based diffusion models. GGDS leverages Graph Neural Networks (GNNs) to capture graph structural information… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026

    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

Displaying 1-10 on page 1 of 3678. Per Page