Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,736)
  • Open Access

    ARTICLE

    An Overall Optimization Model Using Metaheuristic Algorithms for the CNN-Based IoT Attack Detection Problem

    Le Thi Hong Van1,*, Le Duc Thuan1, Pham Van Huong1, Nguyen Hieu Minh2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075027 - 10 February 2026

    Abstract Optimizing convolutional neural networks (CNNs) for IoT attack detection remains a critical yet challenging task due to the need to balance multiple performance metrics beyond mere accuracy. This study proposes a unified and flexible optimization framework that leverages metaheuristic algorithms to automatically optimize CNN configurations for IoT attack detection. Unlike conventional single-objective approaches, the proposed method formulates a global multi-objective fitness function that integrates accuracy, precision, recall, and model size (speed/model complexity penalty) with adjustable weights. This design enables both single-objective and weighted-sum multi-objective optimization, allowing adaptive selection of optimal CNN configurations for diverse deployment… More >

  • Open Access

    ARTICLE

    VIF-YOLO: A Visible-Infrared Fusion YOLO Model for Real-Time Human Detection in Dense Smoke Environments

    Wenhe Chen1, Yue Wang1, Shuonan Shen1, Leer Hua1, Caixia Zheng2, Qi Pu1,*, Xundiao Ma3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074682 - 10 February 2026

    Abstract In fire rescue scenarios, traditional manual operations are highly dangerous, as dense smoke, low visibility, extreme heat, and toxic gases not only hinder rescue efficiency but also endanger firefighters’ safety. Although intelligent rescue robots can enter hazardous environments in place of humans, smoke poses major challenges for human detection algorithms. These challenges include the attenuation of visible and infrared signals, complex thermal fields, and interference from background objects, all of which make it difficult to accurately identify trapped individuals. To address this problem, we propose VIF-YOLO, a visible–infrared fusion model for real-time human detection in… More >

  • Open Access

    ARTICLE

    Lexical-Prior-Free Planning: A Symbol-Agnostic Pipeline that Enables LLMs and LRMs to Plan under Obfuscated Interfaces

    Zhendong Du*, Hanliu Wang, Kenji Hashimoto

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074520 - 10 February 2026

    Abstract Planning in lexical-prior-free environments presents a fundamental challenge for evaluating whether large language models (LLMs) possess genuine structural reasoning capabilities beyond lexical memorization. When predicates and action names are replaced with semantically irrelevant random symbols while preserving logical structures, existing direct generation approaches exhibit severe performance degradation. This paper proposes a symbol-agnostic closed-loop planning pipeline that enables models to construct executable plans through systematic validation and iterative refinement. The system implements a complete generate-verify-repair cycle through six core processing components: semantic comprehension extracts structural constraints, language planner generates text plans, symbol translator performs structure-preserving mapping,… More >

  • Open Access

    ARTICLE

    A Ransomware Detection Approach Based on LLM Embedding and Ensemble Learning

    Abdallah Ghourabi1,*, Hassen Chouaib2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074505 - 10 February 2026

    Abstract In recent years, ransomware attacks have become one of the most common and destructive types of cyberattacks. Their impact is significant on the operations, finances and reputation of affected companies. Despite the efforts of researchers and security experts to protect information systems from these attacks, the threat persists and the proposed solutions are not able to significantly stop the spread of ransomware attacks. The latest remarkable achievements of large language models (LLMs) in NLP tasks have caught the attention of cybersecurity researchers to integrate these models into security threat detection. These models offer high embedding… More >

  • Open Access

    ARTICLE

    A CNN-Transformer Hybrid Model for Real-Time Recognition of Affective Tactile Biosignals

    Chang Xu1,*, Xianbo Yin2, Zhiyong Zhou1, Bomin Liu1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074417 - 10 February 2026

    Abstract This study presents a hybrid CNN-Transformer model for real-time recognition of affective tactile biosignals. The proposed framework combines convolutional neural networks (CNNs) to extract spatial and local temporal features with the Transformer encoder that captures long-range dependencies in time-series data through multi-head attention. Model performance was evaluated on two widely used tactile biosignal datasets, HAART and CoST, which contain diverse affective touch gestures recorded from pressure sensor arrays. The CNN-Transformer model achieved recognition rates of 93.33% on HAART and 80.89% on CoST, outperforming existing methods on both benchmarks. By incorporating temporal windowing, the model enables More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074041 - 10 February 2026

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

  • Open Access

    ARTICLE

    Toward Secure and Auditable Data Sharing: A Cross-Chain CP-ABE Framework

    Ye Tian1,*, Zhuokun Fan1, Yifeng Zhang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073935 - 10 February 2026

    Abstract Amid the increasing demand for data sharing, the need for flexible, secure, and auditable access control mechanisms has garnered significant attention in the academic community. However, blockchain-based ciphertext-policy attribute-based encryption (CP-ABE) schemes still face cumbersome ciphertext re-encryption and insufficient oversight when handling dynamic attribute changes and cross-chain collaboration. To address these issues, we propose a dynamic permission attribute-encryption scheme for multi-chain collaboration. This scheme incorporates a multi-authority architecture for distributed attribute management and integrates an attribute revocation and granting mechanism that eliminates the need for ciphertext re-encryption, effectively reducing both computational and communication overhead. It More >

  • Open Access

    ARTICLE

    Scalable and Resilient AI Framework for Malware Detection in Software-Defined Internet of Things

    Maha Abdelhaq1, Ahmad Sami Al-Shamayleh2, Adnan Akhunzada3,*, Nikola Ivković4, Toobah Hasan5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073577 - 10 February 2026

    Abstract The rapid expansion of the Internet of Things (IoT) and Edge Artificial Intelligence (AI) has redefined automation and connectivity across modern networks. However, the heterogeneity and limited resources of IoT devices expose them to increasingly sophisticated and persistent malware attacks. These adaptive and stealthy threats can evade conventional detection, establish remote control, propagate across devices, exfiltrate sensitive data, and compromise network integrity. This study presents a Software-Defined Internet of Things (SD-IoT) control-plane-based, AI-driven framework that integrates Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks for efficient detection of evolving multi-vector, malware-driven botnet attacks.… More >

  • Open Access

    ARTICLE

    Evolve and Revoke: A Secure and Efficient Conditional Proxy Re-Encryption Scheme with Ciphertext Evolution

    Han-Yu Lin, Tung-Tso Tsai*, Yi-Jia Ye

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073553 - 10 February 2026

    Abstract Cloud data sharing is an important issue in modern times. To maintain the privacy and confidentiality of data stored in the cloud, encryption is an inevitable process before uploading the data. However, the centralized management and transmission latency of the cloud makes it difficult to support real-time processing and distributed access structures. As a result, fog computing and the Internet of Things (IoT) have emerged as crucial applications. Fog-assisted proxy re-encryption is a commonly adopted technique for sharing cloud ciphertexts. It allows a semi-trusted proxy to transform a data owner’s ciphertext into another re-encrypted ciphertext… More >

Displaying 1-10 on page 1 of 3736. Per Page