Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    Building types in France

    Clustering building morphometrics using national spatial data

    Alessandro Araldi1, David Emsellem2, Giovanni Fusco1, Andrea Tettamanzi3, Denis Overal2

    Revue Internationale de Géomatique, Vol.31, No.2, pp. 265-302, 2022, DOI:10.3166/RIG.31.265-302© 2022

    Abstract The identification and description of building typologies play a fundamental role in the understanding of the overall built-up form. A growing body of research is developing and implementing sophisticated, computer-aided protocols for the identification of building typologies. This paper shares the same goal. An innovative data-driven procedure for the unsupervised identification and description of building types and organization is here presented. After a specific pre-processing procedure, we develop an unsupervised clustering combining a new algorithm of Naive Bayes inference and hierarchical ascendant approaches relying on six morphometric features of buildings. This protocol allows us to identify groups of buildings sharing… More >

  • Open Access

    ARTICLE

    A CORRELATION FOR NUSSELT NUMBER UNDER TURBULENT MIXED CONVECTION USING TRANSIENT HEAT TRANSFER EXPERIMENTS

    N. Gnanasekaran, C. Balaji*

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-6, 2011, DOI:10.5098/hmt.v2.2.3008

    Abstract This paper reports the results of an experimental investigation of transient, turbulent mixed convection in a vertical channel in which one of the walls is heated and the other is adiabatic. The goal is to simultaneously estimate the constants in a Nusselt number correlation whose form is assumed a priori by synergistically marrying the experimental results with repeated numerical calculations that assume guess values of the constants. The convective heat transfer coefficient “h”is replaced by the Nusselt number (Nu) and the constants in the Nusselt number are to be evaluated. From the experimentally obtained temperature time history and the simulated… More >

  • Open Access

    ARTICLE

    Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks: An Empirical Study

    Shahad Alzahrani1, Hatim Alsuwat2, Emad Alsuwat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1635-1654, 2024, DOI:10.32604/cmes.2023.044718

    Abstract Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance. In this research paper, we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms. Our framework utilizes latent variables to quantify… More >

  • Open Access

    ARTICLE

    Computational Analysis of Novel Extended Lindley Progressively Censored Data

    Refah Alotaibi1, Mazen Nassar2,3, Ahmed Elshahhat4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2571-2596, 2024, DOI:10.32604/cmes.2023.030582

    Abstract A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing, bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied. In this research, using a progressive Type-II censored, various inferences of the MOL model parameters of life are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of the model parameters and various reliability measures are investigated. Against both symmetric and asymmetric loss functions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with the assumption of independent gamma priors. From the Fisher information… More >

  • Open Access

    ARTICLE

    System Reliability Analysis Method Based on T-S FTA and HE-BN

    Qing Xia1, Yonghua Li2,*, Dongxu Zhang2, Yufeng Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1769-1794, 2024, DOI:10.32604/cmes.2023.030724

    Abstract For high-reliability systems in military, aerospace, and railway fields, the challenges of reliability analysis lie in dealing with unclear failure mechanisms, complex fault relationships, lack of fault data, and uncertainty of fault states. To overcome these problems, this paper proposes a reliability analysis method based on T-S fault tree analysis (T-S FTA) and Hyper-ellipsoidal Bayesian network (HE-BN). The method describes the connection between the various system fault events by T-S fuzzy gates and translates them into a Bayesian network (BN) model. Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation, a reliability modeling method… More >

  • Open Access

    ARTICLE

    Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Xianyu Wang2, Uzair Aslam Bhatti1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3257-3274, 2023, DOI:10.32604/cmc.2023.039430

    Abstract To obtain the optimal Bayesian network (BN) structure, researchers often use the hybrid learning algorithm that combines the constraint-based (CB) method and the score-and-search (SS) method. This hybrid method has the problem that the search efficiency could be improved due to the ample search space. The search process quickly falls into the local optimal solution, unable to obtain the global optimal. Based on this, the Particle Swarm Optimization (PSO) algorithm based on the search space constraint process is proposed. In the first stage, the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of… More >

  • Open Access

    ARTICLE

    Research on Freezing of Gait Recognition Method Based on Variational Mode Decomposition

    Shoutao Li1,2,*, Ruyi Qu1, Yu Zhang1, Dingli Yu3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2809-2823, 2023, DOI:10.32604/iasc.2023.036999

    Abstract Freezing of Gait (FOG) is the most common and disabling gait disorder in patients with Parkinson’s Disease (PD), which seriously affects the life quality and social function of patients. This paper proposes a FOG recognition method based on the Variational Mode Decomposition (VMD). Firstly, VMD instead of the traditional time-frequency analysis method to complete adaptive decomposition to the FOG signal. Secondly, to improve the accuracy and speed of the recognition algorithm, use the CART model as the base classifier and perform the feature dimension reduction. Then use the RUSBoost ensemble algorithm to solve the problem of unbalanced sample size and… More >

  • Open Access

    ARTICLE

    Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion

    Dan Zhang1, Yu Zhang2, Yiwen Liang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2317-2336, 2023, DOI:10.32604/cmc.2023.038026

    Abstract The dendritic cell algorithm (DCA) is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system. Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA. The loss function of DCA is ambiguous due to its complexity. To reduce the uncertainty, several researchers simplified the algorithm program; some introduced gradient descent to optimize parameters; some utilized searching methods to find the optimal parameter combination. However, these studies are either time-consuming or need to be revised in the case of non-convex functions. To overcome the problems,… More >

  • Open Access

    PROCEEDINGS

    Efficient and Robust Temperature Field Simulation of Long-Distance Crude Oil Pipeline Based on Bayesian Neural Network and PDE

    Weixin Jiang1,*, Qing Yuan2, Zongze Li3, Junhua Gong3, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.08861

    Abstract The hydraulic and thermal simulation of crude oil pipeline transportation is greatly significant for the safe transportation and accurate regulation of pipelines. With reasonable basic parameters, the solution of the traditional partial differential equation (PDE) for the axial soil temperature field on the pipeline can obtain accurate simulation results, yet it brings about a low calculation efficiency problem. In order to overcome the low-efficiency problem, an efficient and robust hybrid solution model for soil temperature field coupling with Bayesian neural network and PDE is proposed, which considers the dynamic changes of boundary conditions. Four models, including the proposed hybrid model,… More >

  • Open Access

    REVIEW

    A Survey on Acute Leukemia Expression Data Classification Using Ensembles

    Abdel Nasser H. Zaied1, Ehab Rushdy2, Mona Gamal3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1349-1364, 2023, DOI:10.32604/csse.2023.033596

    Abstract Acute leukemia is an aggressive disease that has high mortality rates worldwide. The error rate can be as high as 40% when classifying acute leukemia into its subtypes. So, there is an urgent need to support hematologists during the classification process. More than two decades ago, researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case. The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data. Ensemble machine learning is an effective method that combines individual classifiers to classify new samples. Ensemble classifiers… More >

Displaying 1-10 on page 1 of 86. Per Page