Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Structural Interval Reliability Algorithm Based on Bernstein Polynomials and Evidence Theory

    Xu Zhang1, Jianchao Ni2, Juxi Hu3,*, Weisi Chen4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1947-1960, 2023, DOI:10.32604/csse.2023.035118

    Abstract Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors. Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid. The uncertain parameters mainly exist in the form of intervals. This method requires a lot of calculation and is often difficult to achieve efficiently. In order to solve this problem, this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive uncertainty. Based on the non-probabilistic… More >

  • Open Access

    ARTICLE

    Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ

    Qingbo Cai1, Reşat Aslan2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1479-1493, 2022, DOI:10.32604/cmes.2022.018338

    Abstract The main purpose of this paper is to introduce some approximation properties of a Kantorovich kind q-Bernstein operators related to Bézier basis functions with shape parameter . Firstly, we compute some basic results such as moments and central moments, and derive the Korovkin type approximation theorem for these operators. Next, we estimate the order of convergence in terms of the usual modulus of continuity, for the functions belong to Lipschitz-type class and Peetre’s K-functional, respectively. Lastly, with the aid of Maple software, we present the comparison of the convergence of these newly defined operators to the certain function with some… More >

  • Open Access

    ARTICLE

    Residual Correction Procedure with Bernstein Polynomials for Solving Important Systems of Ordinary Differential Equations

    M. H. T. Alshbool1, W. Shatanawi2, 3, 4, *, I. Hashim5, M. Sarr1

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 63-80, 2020, DOI:10.32604/cmc.2020.09431

    Abstract One of the most attractive subjects in applied sciences is to obtain exact or approximate solutions for different types of linear and nonlinear systems. Systems of ordinary differential equations like systems of second-order boundary value problems (BVPs), Brusselator system and stiff system are significant in science and engineering. One of the most challenge problems in applied science is to construct methods to approximate solutions of such systems of differential equations which pose great challenges for numerical simulations. Bernstein polynomials method with residual correction procedure is used to treat those challenges. The aim of this paper is to present a technique… More >

  • Open Access

    ARTICLE

    Numerical Study for a Class of Variable Order Fractional Integral-differential Equation in Terms of Bernstein Polynomials

    Jinsheng Wang1, Liqing Liu2, Yiming Chen2, Lechun Liu2, Dayan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 69-85, 2015, DOI:10.3970/cmes.2015.104.069

    Abstract The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. The fractional derivative is described in the Caputo sense. Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable. By solving the algebraic equations, the numerical solutions are acquired. The method in general is easy to implement and yields good results. Numerical examples are provided to demonstrate the validity and applicability of the method. More >

  • Open Access

    ARTICLE

    Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials

    Yiming Chen1, Liqing Liu1, Xuan Li1 and Yannan Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 81-100, 2014, DOI:10.3970/cmes.2014.097.081

    Abstract In this paper, Bernstein polynomials method is proposed for the numerical solution of a class of variable order time fractional diffusion equation. Coimbra variable order fractional operator is adopted, as it is the most appropriate and desirable definition for physical modeling. The Coimbra variable order fractional operator can also be regarded as a Caputo-type definition. The main characteristic behind this approach in this paper is that we derive two kinds of operational matrixes of Bernstein polynomials. With the operational matrixes, the equation is transformed into the products of several dependent matrixes which can also be viewed as the system of… More >

  • Open Access

    ARTICLE

    Operational Matrix Method for Solving Variable Order Fractional Integro-differential Equations

    Mingxu Yi1, Jun Huang1, Lifeng Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 361-377, 2013, DOI:10.3970/cmes.2013.096.361

    Abstract In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series together with the polynomials operational matrix are utilized to reduce the variable order fractional integro-differential equations to a system of algebraic equations. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Some examples are included to demonstrate the validity and applicability of the… More >

  • Open Access

    ARTICLE

    Bernstein Polynomials Method for Fractional Convection-Diffusion Equation with Variable Coefficients

    Yiming Chen, Mingxu Yi, Chen Chen, Chunxiao Yu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.6, pp. 639-654, 2012, DOI:10.3970/cmes.2012.083.639

    Abstract In this paper, Bernstein polynomials method is proposed for the numerical solution of a class of space-time fractional convection-diffusion equation with variable coefficients. This method combines the definition of fractional derivatives with some properties of Bernstein polynomials and are dispersed the coefficients efficaciously. The main characteristic behind this method is that the original problem is translated into a Sylvester equation. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples show that the method is effective. More >

Displaying 1-10 on page 1 of 7. Per Page