Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    A Multi-Frequency Topology Optimization Method for Vibro-Acoustic Problems

    Dan Li1, Jie Wang1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09139

    Abstract In practical vibro-acoustic problems, the external excitation normally contains a certain frequency band structure [1]. Therefore, it is needed to perform optimization under frequency band analysis. For sound radiation problems caused by structural vibration, a topology optimization method for structural materials is proposed based on the acoustic-vibration coupling analysis [2-6] and the frequency-band matrix interpolation method [7,8]. By combining the advantages of FEM and BEM in structural and acoustic field analysis, the accurate solution of the acoustic-vibration coupling problem is achieved. The structural material interpolation model is established using the solid isotropic material with penalization (SIMP) method, and the topological… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    PROCEEDINGS

    A Shape Optimization Approach for 3D Doubly-Periodic Multi-Layered Systems

    Haibo Chen1,*, Fuhang Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09414

    Abstract Acoustic wave propagation has been the subject of many studies in engineering and physics. Researchers have shown an increased interest in recent years in the acoustic scattering of periodic systems, such as phononic crystals and metamaterials [1]. These artificial periodic systems possess some particular acoustic characteristics including noise control, waveguides and negative refraction, which manifest excellent potential applicability in acoustic engineering. Based on the isogeometric acoustic boundary element method (BEM) [2], an efficient shape optimization approach is proposed in this research for threedimensional doubly-periodic multi-layered systems. The interfaces between different acoustic mediums are infinite doubly periodic surfaces, which can be… More >

Displaying 1-10 on page 1 of 3. Per Page