Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    2D Numerical Simulation of Blasting Crater and Breaking Fragmentations

    Jingao Wu1,2, Yong Fan1,2,*, Zhendong Leng1,3, Guangdong Yang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 811-839, 2025, DOI:10.32604/cmes.2025.065632 - 31 July 2025

    Abstract The formation process of blasting craters and blasting fragments is simulated using the continuum-discontinuum element method (CDEM), providing a reference for blasting engineering design. The calculation model of the blasting funnel is established, and the formation and fragmentation effect of the blasting crater under different explosive burial depths and different explosive package masses are numerically simulated. The propagation law of the explosion stress wave and the formation mechanism of the blasting crater are studied, and the relationship between the rock-crushing effect and blasting design parameters is quantitatively evaluated. Comparing the results of numerical simulation with… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous–Discontinuous Element Method

    Rui Zhang1, Lixiang Wang2,*, Jing Li1,4, Chun Feng2, Yiming Zhang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2103-2129, 2024, DOI:10.32604/cmes.2024.049885 - 20 May 2024

    Abstract Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations. Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production. In this study, we employ a hybrid finite-discrete element method, known as the continuous–discontinuous element method (CDEM), to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters. The model incorporates the four most prevalent perforation geometries, as delineated in an engineering technical report. Real-world perforations deviate from the ideal cylindrical shape, More >

Displaying 1-10 on page 1 of 2. Per Page