Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Optimisation Strategy of Carbon Dioxide Methanation Technology Based on Microbial Electrolysis Cells

    Qifen Li, Xiaoxiao Yan*, Yongwen Yang, Liting Zhang, Yuanbo Hou

    Journal of Renewable Materials, Vol.11, No.7, pp. 3177-3191, 2023, DOI:10.32604/jrm.2023.027749

    Abstract Microbial Electrolytic Cell (MEC) is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals. The regenerative electrochemical system is a MEC improvement system for methane gas produced by biological carbon sequestration technology using renewable energy sources to provide a voltage environment. In response to the influence of fluctuating disturbances of renewable electricity and the long system start-up time, this paper analyzes the characteristics of two strategies, regulating voltage parameter changes and activated sludge pretreatment, on the methane production efficiency of the renewable gas electrochemical system. In this system,… More >

  • Open Access

    ARTICLE

    Study on Biological Pathway of Carbon Dioxide Methanation Based on Microbial Electrolysis Cell

    Guanwen Ding, Qifen Li*, Liting Zhang, Yuanbo Hou, Xiaoxiao Yan

    Journal of Renewable Materials, Vol.11, No.1, pp. 197-207, 2023, DOI:10.32604/jrm.2023.020277

    Abstract Realization of CO2 resource utilization is the main development direction of CO2 reduction. The CO2 methanation technology based on microbial electrolysis cell (MEC) has the characteristics of ambient temperature and pressure, green and low-carbon, which meets the need of low-carbon energy transition. However, the lack of the system such as the change of applied voltage and the reactor amplification will affect the methane production efficiency. In this research, the efficiency of methane production with different applied voltages and different types of reactors was carried out. The results were concluded that the maximum methane production rate of the H-type two-chamber microbial… More >

Displaying 1-10 on page 1 of 2. Per Page