Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    REVIEW

    Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance

    Nishit Savla1, Raksha Anand2, Soumya Pandit2,*, Ram Prasad3,*

    Journal of Renewable Materials, Vol.8, No.12, pp. 1581-1605, 2020, DOI:10.32604/jrm.2020.011803

    Abstract Microbial fuel cells (MFCs) are an attractive innovation at the nexus of energy and water security for the future. MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step. The material of the anode plays a vital role in increasing the MFC’s power output. The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties. The nanomaterials in anode gives a high surface area, improved electron transfer promotes electroactive biofilm. Enhanced power output in terms of Direct current (DC) can be obtained as the consequence of improved microbe-electrode interaction. However,… More >

  • Open Access

    ARTICLE

    Simulation Analysis on Mechanical Property Characterization of Carbon Nanotubes Reinforced Epoxy Composites

    Dan Li1, Li Ding1, Zhengang Liu2, Qiang Li3, Kaiyun Guo1, Hailin Cao1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 145-171, 2020, DOI:10.32604/cmes.2020.010822

    Abstract Carbon nanotube (CNT)-reinforced composites have ultra-high elastic moduli, low densities, and fibrous structures. This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro- to macro-scales. The nanocomposites were modeled using representative volume elements (RVEs), and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs, which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites. When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites, the mechanical… More >

  • Open Access

    ARTICLE

    Sunflower-Like SrCo2S4@f-MWCNTs Hybrid Wrapped by Engineering N-Reduced Graphene Oxide for High Performance Dye-Sensitized Solar Cells

    Weiming Zhang1, Muhammad Wasim Khan1, Xueqin Zuo1, Qun Yang1, Huaibao Tang1,2, Shaowei Jin1,2, Guang Li1,2,3,*

    Journal of Renewable Materials, Vol.8, No.4, pp. 431-446, 2020, DOI:10.32604/jrm.2020.09158

    Abstract A novel sunflower-like nanocomposite of SrCo2S4 nanoflakes and functionalized multiwall carbon nanotubes (f-MWCNTs) entanglement enveloped in nitrogen-reduced graphene oxide (N-RGO) is prepared by a cheap process. The unique entanglement structure of the material exhibits higher specific surface area, better electrical conductivity and other properties. This helps to reduce the transfer resistance in the photoelectric process of the battery and improve the electrochemical activity, thus increasing the photoelectric conversion efficiency of the battery. The new ternary cobalt-based sulfide material can replace platinum as the counter electrode (CE) material loaded on dye-sensitized solar cells (DSSCs). DSSCs with SrCo2S4@f-MWCNTs@N-RGO (SCS@f-M@N-R) as CE material… More >

  • Open Access

    ARTICLE

    On Axisymmetric Longitudinal Wave Propagation in Double-Walled Carbon Nanotubes

    S.D. Akbarov1,2

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 63-85, 2013, DOI:10.3970/cmc.2013.033.063

    Abstract An attempt is made into the investigation of longitudinal axisymmetric wave propagation in the DWCNT with the use of the exact equations of motion of the linear theory of elastodynamics. The DWCNT is modeled as concentricallynested two circular hollow cylinders between which there is free space. The difference in the radial displacements of these cylinders is coupled with the van der Waals forces and it is assumed that full slipping conditions occur on the inner surface of the outer tube and on the outer surface of the inner tube. Numerical results on the influence of the problem parameters such as… More >

  • Open Access

    ARTICLE

    Ecofriendly E-Nose Based in PLA and Only 0.3 wt% of CNTs

    Laura Ribba, Jonathan Cimadoro, Silvia Goyanes*

    Journal of Renewable Materials, Vol.7, No.4, pp. 355-363, 2019, DOI:10.32604/jrm.2019.04083

    Abstract In this work, conductive polymer nanocomposites were developed based on a biodegradable and biobased polymer (poly (lactic acid)), with the incorporation of only 0.3 wt% of carbon nanotubes (CNTs) to be used as volatile solvent sensors. The correct dispersion of the nanofiller was achieved thanks to a CNT non-covalent modification with an azo-dye (disperse orange 3) which allowed to reach the percolation for electric conduction in values as low as 0.3 wt%. The chemo-resistive properties of the developed sensors were investigated by exposure to organic vapors (ethanol, tetrahydrofuran and toluene) and water vapor, showing good selectivity. In addition, considering the… More >

  • Open Access

    ARTICLE

    Encapsulation of Pt-labelled DNA Molecules inside Carbon Nanotubes

    Daxiang Cui1, Cengiz S. Ozkan2, Sathyajith Ravindran3, Yong Kong1, Huajian Gao1

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 113-122, 2004, DOI:10.3970/mcb.2004.001.113

    Abstract Experiments on encapsulating Pt--labelled DNA molecules inside multiwalled carbon nanotubes (MWCNT) were performed under temperature and pressure conditions of 400K and 3 Bar. The DNA-CNT hybrids were purified via agarose gel electrophoresis and analyzed via high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that the Pt-labelled DNA molecules attached to the outside walls of CNTs could be removed by electrophoresis. The HR-TEM and EDX results demonstrated that 2-3% of the Pt-labelled DNA molecules were successfully encapsulated inside the MWCNTs. The experimental study complements our previous molecular dynamics simulations on encapsulation of single stranded… More >

  • Open Access

    ABSTRACT

    Wave Propagation in Carbon Nanotubes

    Lifeng Wang, Haiyan Hu, Wanlin Guo

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.1, pp. 15-16, 2011, DOI:10.3970/icces.2011.020.015

    Abstract The wave dispersions of longitudinal and flexural wave propagations in single-walled and multi-walled carbon nanotubes are studied in the frame of continuum mechanics and molecular dynamics simulation. The dispersion relations between the phase velocity, group velocity and the wave number for the flexural and longitudinal waves, described by a beam model and a cylindrical shell model, are established for both single- and multi-walled carbon nanotubes. The effect of micro-structures in carbon nanotubes on the wave dispersion is revealed through the non-local elastic models of beam and cylindrical shell including the second order gradient of strain and a parameter of micro-structure.… More >

  • Open Access

    ABSTRACT

    Carbon Nanotubes and graphenes: nanomaterials and nanodevices

    Chen Minjiang, Fang Yu, Huanchao Yang, Haiqing Zhou, Lianfeng Sun

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 25-26, 2011, DOI:10.3970/icces.2011.018.025

    Abstract Some of our recent experimental works on carbon nanotube and graphenes are presented in this work. There are mainly three parts, which are explained in more details as the followings:
    1. Single-walled carbon nanotube crystal: a new condensed form of SWNTs-crystal of SWNTs is obtained by using a series of diamond wire drawing dies. X-ray experiment indicates that the SWNTs arrange in a triangular lattice with a constant of 19.6 angstrom and the properties of SWNT crystal are studied.
    2. SWNT energy conversion devices and self-powered system: We show that the water inside SWNT can be driven to… More >

  • Open Access

    ABSTRACT

    Study of Poisson's Ratios of Graphene and Single-Walled Carbon Nanotubes Based on an Improved Molecular Structural Mechanics Model

    P. Zhao, G. Shi

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 13-14, 2011, DOI:10.3970/icces.2011.018.013

    Abstract The Poisson's ratios of a single layered graphene sheet and single-walled carbon nanotubes (SWCNTs) are computed using an improved equivalent structural mechanics model where the bond angle variations are modeled by the flexible connections of framed structures. The accuracy of the results given by the present model is evaluated by comparing the predicted results with the experimental data and the theoretical and computational results reported in the literature. It is shown that the Poisson's ratios given by the present computational model agree with the experimental data. The present result shows that the Poisson's ratios of both graphene and SWCNTs are… More >

  • Open Access

    ABSTRACT

    Molecular Dynamics Simulations of Carbon Nanotubes Cross-Bonding by Proton Irradiation

    N. J. Lee, C.R. Welch1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 11-12, 2009, DOI:10.3970/icces.2009.013.011

    Abstract Carbon nanotubes have significant potential as the basis for super infrastructure material. The shear modulus of carbon nanotube ensembles is relatively low, comparable to graphite, as the carbon nanotubes interact via weak van der Waals forces. Unmodified, their intermolecular interactions are insufficient to take full advantage of the extraordinarily high strengths predicted for carbon nanotube-based fibers. Thus, a key to their use in high-strength materials is developing strong bonds between these molecules. In this study, we examine the potential development of covalent bonds between carbon nanotube pairs cross-bonded by proton bombardment using molecular dynamics simulation. Covalent bond formation between aligned… More >

Displaying 11-20 on page 2 of 69. Per Page