Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Advanced ECG Signal Analysis for Cardiovascular Disease Diagnosis Using AVOA Optimized Ensembled Deep Transfer Learning Approaches

    Amrutanshu Panigrahi1, Abhilash Pati1, Bibhuprasad Sahu2, Ashis Kumar Pati3, Subrata Chowdhury4, Khursheed Aurangzeb5,*, Nadeem Javaid6, Sheraz Aslam7,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1633-1657, 2025, DOI:10.32604/cmc.2025.063562 - 09 June 2025

    Abstract The integration of IoT and Deep Learning (DL) has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management (PHM). Electrocardiograms (ECGs) are widely used for cardiovascular disease (CVD) diagnosis, but fluctuating signal patterns make classification challenging. Computer-assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine learning are helping healthcare practitioners manage greater patient populations. With this motivation, the study proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis. Deep Transfer Learning (DTL) techniques extract features, followed by feature fusion to eliminate redundancy… More >

  • Open Access

    ARTICLE

    An AI-Enabled Framework for Transparency and Interpretability in Cardiovascular Disease Risk Prediction

    Isha Kiran1, Shahzad Ali2,3, Sajawal ur Rehman Khan4,5, Musaed Alhussein6, Sheraz Aslam7,8,*, Khursheed Aurangzeb6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5057-5078, 2025, DOI:10.32604/cmc.2025.058724 - 06 March 2025

    Abstract Cardiovascular disease (CVD) remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis, driven by risk factors such as hypertension, high cholesterol, and irregular pulse rates. Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors, making early detection difficult. In this research, we propose a novel artificial intelligence-enabled (AI-enabled) framework for CVD risk prediction that integrates machine learning (ML) with eXplainable AI (XAI) to provide both high-accuracy predictions and transparent, interpretable insights. Compared to existing studies that typically focus on either optimizing ML… More >

  • Open Access

    ARTICLE

    Segmentation of the Left Ventricle in Cardiac MRI Using Random Walk Techniques

    Osama S. Faragallah1,*, Ghada Abdel-Aziz2, Hala S. El-sayed3, Gamal G. N. Geweid4,5

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 575-588, 2021, DOI:10.32604/iasc.2021.019023 - 11 August 2021

    Abstract As a regular tool for assessing and diagnosing cardiovascular disease (CVD), medical professionals and health care centers, are highly dependent on cardiac imaging. The purpose of dividing the cardiac images is to paint the inner and outer walls of the heart to divide all or part of the limb’s boundaries. In order to enhance cardiologist in the process of cardiac segmentation, new and accurate methods are needed to divide the selected object, which is the left ventricle (LV). Segmentation techniques aim to provide a fast segmentation process and improve the reliability of the process. In… More >

Displaying 1-10 on page 1 of 3. Per Page