Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Cryptanalysis and Improvement of a Chaotic Map-Control-Based and the Plain Image-Related Cryptosystem

    Bin Lu1, Fenlin Liu1, Xin Ge1,*, Zhenyu Li2

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 687-699, 2019, DOI:10.32604/cmc.2019.05633

    Abstract Due to the characteristics of chaotic systems, different cryptosystems based on chaos have been proposed to satisfy the security of multimedia data. A plain image-related chaotic algorithm is proposed by Luo et al. with high speed and efficiency. Security weaknesses of the cryptosystem are studied in this paper. It is found that the important secret key information is leaked because an important parameter can be obtained after an inverse operation in the last step of the cryptosystems without secret key. Meanwhile, the value zero is processed improperly in quantification algorithm. Based on the weaknesses, chosen More >

  • Open Access

    ABSTRACT

    Research on active vibration isolation based on chaos synchronization

    S.J. Zhu, Q.H Zeng, J.J Lou, Q.W He

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 43-44, 2011, DOI:10.3970/icces.2011.018.043

    Abstract Line spectra are the most visible signs of the ships' radiated noise spectrum. The potential of chaotifying vibration isolation systems to reduce line spectra and improve its capability of concealment have been recently reported. Basically, as the existing isolation system design is based on linear theory, it is difficult to produce the nonlinear chaotic motion; and if the vibration isolation system(VIS) is designed directly using the nonlinear theory, it is also difficult to produce the chaotic motion because of the difficulties in accurate calculation of vibration isolation device parameters. In this paper, a controller design More >

  • Open Access

    ARTICLE

    A Dynamical Approach to the Spatio-temporal Features of the Portevin-Le Chatelier Effect

    G.Ananthakrishna1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 233-240, 2005, DOI:10.3970/cmes.2005.007.233

    Abstract We show that the extended Ananthakrishna's model exhibits all the features of the Portevin - Le Chatelier effect including the three types of bands. The model reproduces the recently observed crossover from a low dimensional chaotic state at low and medium strain rates to a high dimensional power law state of stress drops at high strain rates. The dynamics of crossover is elucidated through a study of the Lyapunov spectrum. More >

  • Open Access

    ARTICLE

    Heterogeneous Memristive Models Design and Its Application in Information Security

    Shaojiang Zhong1, *

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 465-479, 2019, DOI:10.32604/cmc.2019.05853

    Abstract Based on the three-dimensional classic Chua circuit, a nonlinear circuit containing two flux-control memristors is designed. Due to the difference in the design of the characteristic equation of the two magnetron memristors, their position form a symmetrical structure with respect to the capacitor. The existence of chaotic properties is proved by analyzing the stability of the system, including Lyapunov exponent, equilibrium point, eigenvalue, Poincare map, power spectrum, bifurcation diagram et al. Theoretical analysis and numerical calculation show that this heterogeneous memristive model is a hyperchaotic five-dimensional nonlinear dynamical system and has a strong chaotic behavior. More >

  • Open Access

    ARTICLE

    Improved Adaptive Particle Filter for Integrated Navigation System

    Mengchu Tian1, Yuming Bo1, Zhimin Chen2,3, Panlong Wu1, Gaopeng Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.5, pp. 285-301, 2015, DOI:10.3970/cmes.2015.108.285

    Abstract Particle filter based on particle swarm optimization algorithm is not precise enough and easily trapping in local optimum, it is difficult to satisfy the requirement of advanced integrated navigation system. To solve these problems, an improved adaptive particle filter based on chaos particle swarm was proposed and used in GPS/INS integrated navigation system. This algorithm introduced chaos sequence to update the weight and threshold, which could improve the quality of samples and reduce the local optimization and enhance the global searching ability. In addition, the avoid factor was set which made the particles be away More >

  • Open Access

    ARTICLE

    Probabilistic Collocation used in a Two-Step approach for \\efficient uncertainty quantification in computational fluid dynamics.

    G.J.A. Loeven1,2, H. Bijl3

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.3, pp. 193-212, 2008, DOI:10.3970/cmes.2008.036.193

    Abstract In this paper a Two-Step approach is presented for uncertainty quantification for expensive problems with multiple uncertain parameters. Both steps are performed using the Probabilistic Collocation method. The first step consists of a sensitivity analysis to identify the most important parameters of the problem. The sensitivity derivatives are obtained using a first or second order Probabilistic Collocation approximation. For the most important parameters the probability distribution functions are propagated using the Probabilistic Collocation method using higher order approximations. The Two-Step approach is demonstrated for flow around a NACA0012 airfoil with eight uncertain parameters in the More >

  • Open Access

    ARTICLE

    Uncertainty Quantification of the Interaction of a Vortex Pair With the Ground

    J.L. Sereno1, J.C.F. Pereira1

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.1, pp. 23-44, 2011, DOI:10.3970/cmes.2011.073.023

    Abstract The evolution of a two-dimensional vortex pair in ground effect was studied under the influence of random initial inputs comprising vortex strength (circulation) or initial vortex position. The paper addresses the questions of how do variations and uncertainties of initial conditions translate to the variability of vortex pair evolution. The stochastic solutions were obtained recurring to the Polynomial Chaos Expansion method of random processes applied to the Navier-Stokes equations for a laminar flow. The method quantifies the extent, dependence and propagation of uncertainty through the model system and, in particular, a methodology for the calculation More >

  • Open Access

    ARTICLE

    On Chaos Control in Uncertain Nonlinear Systems

    Veturia Chiroiu1, Ligia Munteanu2, Ioan Ursu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.3, pp. 229-246, 2011, DOI:10.3970/cmes.2011.072.229

    Abstract Chaotic behavior of uncertain nonlinear systems offers a rich variety of orbits, which can be controlled by bounding the signals involved in closed-loop systems. In this paper, systems with nonlinear uncertainties with no prior knowledge of their bounds, unmodeled dynamic law and rapidly varying disturbances are analyzed in order to propose a stabilization controller of the chaotic behavior via the fuzzy logic systems. More >

  • Open Access

    ARTICLE

    Investigation of Multi Geometric Uncertainties by Different Polynomial Chaos Methodologies Using a Fictitious Domain Solver

    L. Parussini1, V. Pediroda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.1, pp. 29-52, 2008, DOI:10.3970/cmes.2008.023.029

    Abstract In this paper different Polynomial Chaos methods coupled to Fictitious Domain approach have been applied to one- and two- dimensional elliptic problems with multi uncertain variables in order to compare the accuracy and convergence of the methodologies. Both intrusive and non-intrusive methods have been considered, with particular attention to their employment for quantification of geometric uncertainties. A Fictitious Domain approach with Least-Squares Spectral Element approximation has been employed for the analysis of differential problems with uncertain boundary domains. Its main advantage lies in the fact that only a Cartesian mesh, that represents the enclosure, needs More >

  • Open Access

    ARTICLE

    Fictitious Domain with Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method

    L. Parussini1, V. Pediroda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.1, pp. 41-64, 2007, DOI:10.3970/cmes.2007.022.041

    Abstract In this paper the Non-Intrusive Polynomial Chaos Method coupled to a Fictitious Domain approach has been applied to one- and two-dimensional elliptic problems with geometric uncertainties, in order to demonstrate the accuracy and convergence of the methodology. The main advantage of non-intrusive formulation is that existing deterministic solvers can be used. A new Least-Squares Spectral Element method has been employed for the analysis of deterministic differential problems obtained by Non-Intrusive Polynomial Chaos. This algorithm employs a Fictitious Domain approach and for this reason its main advantage lies in the fact that only a Cartesian mesh More >

Displaying 41-50 on page 5 of 51. Per Page