Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Intelligent Detection of Abnormal Traffic Based on SCN-BiLSTM

    Lulu Zhang, Xuehui Du*, Wenjuan Wang, Yu Cao, Xiangyu Wu, Shihao Wang

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1901-1919, 2025, DOI:10.32604/cmc.2025.064270 - 09 June 2025

    Abstract To address the limitations of existing abnormal traffic detection methods, such as insufficient temporal and spatial feature extraction, high false positive rate (FPR), poor generalization, and class imbalance, this study proposed an intelligent detection method that combines a Stacked Convolutional Network (SCN), Bidirectional Long Short-Term Memory (BiLSTM) network, and Equalization Loss v2 (EQL v2). This method was divided into two components: a feature extraction model and a classification and detection model. First, SCN was constructed by combining a Convolutional Neural Network (CNN) with a Depthwise Separable Convolution (DSC) network to capture the abstract spatial features More >

  • Open Access

    ARTICLE

    Neighbor Displacement-Based Enhanced Synthetic Oversampling for Multiclass Imbalanced Data

    I Made Putrama1,2,*, Péter Martinek1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5699-5727, 2025, DOI:10.32604/cmc.2025.063465 - 19 May 2025

    Abstract Imbalanced multiclass datasets pose challenges for machine learning algorithms. They often contain minority classes that are important for accurate predictions. However, when the data is sparsely distributed and overlaps with data points from other classes, it introduces noise. As a result, existing resampling methods may fail to preserve the original data patterns, further disrupting data quality and reducing model performance. This paper introduces Neighbor Displacement-based Enhanced Synthetic Oversampling (NDESO), a hybrid method that integrates a data displacement strategy with a resampling technique to achieve data balance. It begins by computing the average distance of noisy… More >

  • Open Access

    ARTICLE

    FHGraph: A Novel Framework for Fake News Detection Using Graph Contrastive Learning and LLM

    Yuanqing Li1, Mengyao Dai1, Sanfeng Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 309-333, 2025, DOI:10.32604/cmc.2025.060455 - 26 March 2025

    Abstract Social media has significantly accelerated the rapid dissemination of information, but it also boosts propagation of fake news, posing serious challenges to public awareness and social stability. In real-world contexts, the volume of trustable information far exceeds that of rumors, resulting in a class imbalance that leads models to prioritize the majority class during training. This focus diminishes the model’s ability to recognize minority class samples. Furthermore, models may experience overfitting when encountering these minority samples, further compromising their generalization capabilities. Unlike node-level classification tasks, fake news detection in social networks operates on graph-level samples,… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis

    Kun Liu1, Chen Bao1,*, Sidong Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4451-4468, 2025, DOI:10.32604/cmc.2024.059053 - 06 March 2025

    Abstract Large amounts of labeled data are usually needed for training deep neural networks in medical image studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis, labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC),… More >

  • Open Access

    ARTICLE

    Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS

    Mingzhu Tang1, Yujie Huang1, Dongxu Ji2, Hao Yu2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 95-129, 2025, DOI:10.32604/fhmt.2025.061143 - 26 February 2025

    Abstract Load deviations between the output of ultra-supercritical (USC) coal-fired power units and automatic generation control (AGC) commands can adversely affect the safe and stable operation of these units and grid load dispatching. Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples, leading to reduced classification performance in diagnosing load deviations in USC units. To address the class imbalance issue in USC load deviation datasets, this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique (MLNaNBDOS). The method is articulated in three phases. Initially, the traditional… More > Graphic Abstract

    Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528 - 20 June 2024

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    Attenuate Class Imbalance Problem for Pneumonia Diagnosis Using Ensemble Parallel Stacked Pre-Trained Models

    Aswathy Ravikumar, Harini Sriraman*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 891-909, 2023, DOI:10.32604/cmc.2023.035848 - 06 February 2023

    Abstract Pneumonia is an acute lung infection that has caused many fatalities globally. Radiologists often employ chest X-rays to identify pneumonia since they are presently the most effective imaging method for this purpose. Computer-aided diagnosis of pneumonia using deep learning techniques is widely used due to its effectiveness and performance. In the proposed method, the Synthetic Minority Oversampling Technique (SMOTE) approach is used to eliminate the class imbalance in the X-ray dataset. To compensate for the paucity of accessible data, pre-trained transfer learning is used, and an ensemble Convolutional Neural Network (CNN) model is developed. The More >

  • Open Access

    ARTICLE

    Combined Effect of Concept Drift and Class Imbalance on Model Performance During Stream Classification

    Abdul Sattar Palli1,6,*, Jafreezal Jaafar1,2, Manzoor Ahmed Hashmani1,3, Heitor Murilo Gomes4,5, Aeshah Alsughayyir7, Abdul Rehman Gilal1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1827-1845, 2023, DOI:10.32604/cmc.2023.033934 - 06 February 2023

    Abstract Every application in a smart city environment like the smart grid, health monitoring, security, and surveillance generates non-stationary data streams. Due to such nature, the statistical properties of data changes over time, leading to class imbalance and concept drift issues. Both these issues cause model performance degradation. Most of the current work has been focused on developing an ensemble strategy by training a new classifier on the latest data to resolve the issue. These techniques suffer while training the new classifier if the data is imbalanced. Also, the class imbalance ratio may change greatly from… More >

  • Open Access

    ARTICLE

    Enhanced Coyote Optimization with Deep Learning Based Cloud-Intrusion Detection System

    Abdullah M. Basahel1, Mohammad Yamin1, Sulafah M. Basahel2, E. Laxmi Lydia3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4319-4336, 2023, DOI:10.32604/cmc.2023.033497 - 31 October 2022

    Abstract Cloud Computing (CC) is the preference of all information technology (IT) organizations as it offers pay-per-use based and flexible services to its users. But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders. Intrusion Detection System (IDS) refers to one of the commonly utilized system for detecting attacks on cloud. IDS proves to be an effective and promising technique, that identifies malicious activities and known threats by observing traffic data in computers, and warnings are given when such threats were identified. The… More >

Displaying 1-10 on page 1 of 23. Per Page