Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    The correlation of miRNA expression and tumor mutational burden in uterine corpus endometrial carcinoma

    YANYA CHEN1,#, HONGYUAN WU2,#, RUISI ZHOU5,#, HELING DONG4, XUEFANG ZHANG2, XUEWEI WU1, WENSHAN CHEN1, YANTING YOU5,*, YIFEN WU3,*

    BIOCELL, Vol.47, No.6, pp. 1353-1364, 2023, DOI:10.32604/biocell.2023.027346 - 19 May 2023

    Abstract Background: The relationship between microRNA (miRNA) expression patterns and tumor mutation burden (TMB) in uterine corpus endometrial carcinoma (UCEC) was investigated in this study. Methods: The UCEC dataset from The Cancer Genome Atlas (TCGA) database was used to identify the miRNAs that differ in expression between high TMB and low TMB sample sets. The total sample sets were divided into a training set and a test set. TMB levels were predicted using miRNA-based signature classifiers developed by Lasso Cox regression. Test sets were used to validate the classifier. This study investigated the relationship between a miRNA-based signature… More >

  • Open Access

    ARTICLE

    A New Hybrid Feature Selection Sequence for Predicting Breast Cancer Survivability Using Clinical Datasets

    E. Jenifer Sweetlin*, S. Saudia

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 343-367, 2023, DOI:10.32604/iasc.2023.036742 - 29 April 2023

    Abstract This paper proposes a hybrid feature selection sequence complemented with filter and wrapper concepts to improve the accuracy of Machine Learning (ML) based supervised classifiers for classifying the survivability of breast cancer patients into classes, living and deceased using METABRIC and Surveillance, Epidemiology and End Results (SEER) datasets. The ML-based classifiers used in the analysis are: Multiple Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The workflow of the proposed ML algorithm sequence comprises the following stages: data cleaning, data balancing, feature selection via a filter and wrapper sequence, More >

  • Open Access

    ARTICLE

    An Improved Ensemble Learning Approach for Heart Disease Prediction Using Boosting Algorithms

    Shahid Mohammad Ganie1, Pijush Kanti Dutta Pramanik2, Majid Bashir Malik3, Anand Nayyar4, Kyung Sup Kwak5,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3993-4006, 2023, DOI:10.32604/csse.2023.035244 - 03 April 2023

    Abstract Cardiovascular disease is among the top five fatal diseases that affect lives worldwide. Therefore, its early prediction and detection are crucial, allowing one to take proper and necessary measures at earlier stages. Machine learning (ML) techniques are used to assist healthcare providers in better diagnosing heart disease. This study employed three boosting algorithms, namely, gradient boost, XGBoost, and AdaBoost, to predict heart disease. The dataset contained heart disease-related clinical features and was sourced from the publicly available UCI ML repository. Exploratory data analysis is performed to find the characteristics of data samples about descriptive and… More >

  • Open Access

    ARTICLE

    Clustering-Aided Supervised Malware Detection with Specialized Classifiers and Early Consensus

    Murat Dener*, Sercan Gulburun

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1235-1251, 2023, DOI:10.32604/cmc.2023.036357 - 06 February 2023

    Abstract One of the most common types of threats to the digital world is malicious software. It is of great importance to detect and prevent existing and new malware before it damages information assets. Machine learning approaches are used effectively for this purpose. In this study, we present a model in which supervised and unsupervised learning algorithms are used together. Clustering is used to enhance the prediction performance of the supervised classifiers. The aim of the proposed model is to make predictions in the shortest possible time with high accuracy and f1 score. In the first… More >

  • Open Access

    ARTICLE

    Machine Learning Based Classifiers for QoE Prediction Framework in Video Streaming over 5G Wireless Networks

    K. B. Ajeyprasaath, P. Vetrivelan*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1919-1939, 2023, DOI:10.32604/cmc.2023.036013 - 06 February 2023

    Abstract Recently, the combination of video services and 5G networks have been gaining attention in the wireless communication realm. With the brisk advancement in 5G network usage and the massive popularity of three-dimensional video streaming, the quality of experience (QoE) of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends. Therefore, effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction. This work makes the following contribution: First, a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services. The simulation… More >

  • Open Access

    ARTICLE

    Iris Liveness Detection Using Fragmental Energy of Haar Transformed Iris Images Using Ensemble of Machine Learning Classifiers

    Smita Khade1, Shilpa Gite1,2,*, Sudeep D. Thepade3, Biswajeet Pradhan4,5,*, Abdullah Alamri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 323-345, 2023, DOI:10.32604/cmes.2023.023674 - 05 January 2023

    Abstract Contactless verification is possible with iris biometric identification, which helps prevent infections like COVID-19 from spreading. Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses, replayed the video, and print attacks. The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness. Seven assorted feature creation ways are studied in the presented solutions, and these created features are explored for the training of eight distinct… More > Graphic Abstract

    Iris Liveness Detection Using Fragmental Energy of Haar Transformed Iris Images Using Ensemble of Machine Learning Classifiers

  • Open Access

    ARTICLE

    Healthcare Monitoring Using Ensemble Classifiers in Fog Computing Framework

    P. M. Arunkumar1, Mehedi Masud2, Sultan Aljahdali2, Mohamed Abouhawwash3,4,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2265-2280, 2023, DOI:10.32604/csse.2023.032571 - 03 November 2022

    Abstract Nowadays, the cloud environment faces numerous issues like synchronizing information before the switch over the data migration. The requirement for a centralized internet of things (IoT)-based system has been restricted to some extent. Due to low scalability on security considerations, the cloud seems uninteresting. Since healthcare networks demand computer operations on large amounts of data, the sensitivity of device latency evolved among health networks is a challenging issue. In comparison to cloud domains, the new paradigms of fog computing give fresh alternatives by bringing resources closer to users by providing low latency and energy-efficient data… More >

  • Open Access

    ARTICLE

    Age and Gender Classification Using Backpropagation and Bagging Algorithms

    Ammar Almomani1,2,*, Mohammed Alweshah3, Waleed Alomoush4, Mohammad Alauthman5, Aseel Jabai2, Anwar Abbass2, Ghufran Hamad2, Meral Abdalla2, Brij B. Gupta1,6,7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3045-3062, 2023, DOI:10.32604/cmc.2023.030567 - 31 October 2022

    Abstract Voice classification is important in creating more intelligent systems that help with student exams, identifying criminals, and security systems. The main aim of the research is to develop a system able to predicate and classify gender, age, and accent. So, a new system called Classifying Voice Gender, Age, and Accent (CVGAA) is proposed. Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories. It has high precision compared to other algorithms used in More >

  • Open Access

    ARTICLE

    Ensemble Classifier Design Based on Perturbation Binary Salp Swarm Algorithm for Classification

    Xuhui Zhu1,3, Pingfan Xia1,3, Qizhi He2,4,*, Zhiwei Ni1,3, Liping Ni1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 653-671, 2023, DOI:10.32604/cmes.2022.022985 - 29 September 2022

    Abstract Multiple classifier system exhibits strong classification capacity compared with single classifiers, but they require significant computational resources. Selective ensemble system aims to attain equivalent or better classification accuracy with fewer classifiers. However, current methods fail to identify precise solutions for constructing an ensemble classifier. In this study, we propose an ensemble classifier design technique based on the perturbation binary salp swarm algorithm (ECDPB). Considering that extreme learning machines (ELMs) have rapid learning rates and good generalization ability, they can serve as the basic classifier for creating multiple candidates while using fewer computational resources. Meanwhile, we More >

  • Open Access

    ARTICLE

    Real and Altered Fingerprint Classification Based on Various Features and Classifiers

    Saif Saad Hameed, Ismail Taha Ahmed*, Omar Munthir Al Okashi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 327-340, 2023, DOI:10.32604/cmc.2023.031622 - 22 September 2022

    Abstract Biometric recognition refers to the identification of individuals through their unique behavioral features (e.g., fingerprint, face, and iris). We need distinguishing characteristics to identify people, such as fingerprints, which are world-renowned as the most reliable method to identify people. The recognition of fingerprints has become a standard procedure in forensics, and different techniques are available for this purpose. Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models. Therefore, we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and… More >

Displaying 11-20 on page 2 of 39. Per Page