Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,828)
  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    A Novel Quantitative Detection of Sleeve Grouting Compactness Based on Ultrasonic Time-Frequency Dual-Domain Analysis

    Longqi Liao1, Jing Li2, Yuhua Li3, Yuemin Wang3, Jinhua Li1,*, Liyuan Cao4,*, Chunxiang Li4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072237 - 08 January 2026

    Abstract Quantitative detection of sleeve grouting compactness is a technical challenge in civil engineering testing. This study explores a novel quantitative detection method based on ultrasonic time-frequency dual-domain analysis. It establishes a mapping relationship between sleeve grouting compactness and characteristic parameters. First, this study made samples with gradient defects for two types of grouting sleeves, G18 and G20. These included four cases: 2D, 4D, 6D defects (where D is the diameter of the grouting sleeve), and no-defect. Then, an ultrasonic input/output data acquisition system was established. Three-dimensional sound field distribution data were obtained through an orthogonal… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 08 January 2026

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    REVIEW

    Recent Efforts on the Compressive and Tensile Strength Behavior of Thermoplastic-Based Recycled Aggregate Concrete toward Sustainability in Construction Materials

    Mahmoud Alhashash1, Abdullah Alariyan2, Ameen Mokhles Youns3, Favzi Ghreivati4, Ahed Habib5,*, Maan Habib6

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070194 - 08 January 2026

    Abstract Concrete production often relies on natural aggregates, which can lead to resource depletion and environmental harm. In addition, improper disposal of thermoplastic waste exacerbates ecological problems. Although significant attention has recently been given to recycling various waste materials into concrete, studies specifically addressing thermoplastic recycled aggregates are still trending. This underscores the need to comprehensively review existing literature, identify research trends, and recognize gaps in understanding the mechanical performance of thermoplastic-based recycled aggregate concrete. Accordingly, this review summarizes recent investigations focused on the mechanical properties of thermoplastic-based recycled aggregate concrete, emphasizing aspects such as compressive… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    REVIEW

    Ferroptosis: Mechanisms, Comparison with Cuproptosis and Emerging Horizons in Therapeutics

    Shujie Yin1, Zong Li1, Wen-Bin Ou1,2,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069049 - 30 December 2025

    Abstract Ferroptosis is an iron-dependent, excessive lipid peroxidation-driven form of regulated cell death. The core mechanisms of ferroptosis include lipid peroxidation cascade, System Xc-glutathioneglutathione peroxidase 4 axis, iron and lipid metabolism chaos, the NAD(P)Hferroptosis suppressor protein 1—ubiquinone axis, and GTP cyclohydrolase 1 tetrahydrobiopterin-dihydrofolate reductase axis. Cuproptosis is triggered by copper ions and involves ferredoxin 1-mediated aggregation of lipoylated proteins, differing fundamentally from ferroptosis. Both ferroptosis and cuproptosis exhibit dual roles (promote or inhibit) in cancers. And the sensitivity of different cancer types to ferroptosis varies, which may depend on special metabolic signatures (e.g., E-cadherin loss causes epithelial–mesenchymal More > Graphic Abstract

    Ferroptosis: Mechanisms, Comparison with Cuproptosis and Emerging Horizons in Therapeutics

  • Open Access

    ARTICLE

    ZMIZ2/MCM3 Axis Participates in Triple-Negative Breast Cancer Progression

    Xiaopan Zou1,2, Meiyang Sun3, Xin Jiang1, Jingze Yu2, Xiaomeng Li4,*, Bingyu Nie1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.066662 - 30 December 2025

    Abstract Objective: Triple-negative breast cancer (TNBC) is highly aggressive and lacks an effective targeted therapy. This study aimed to elucidate the functions and possible mechanisms of action of zinc finger miz-type containing 2 (ZMIZ2) and minichromosome maintenance complex component 3 (MCM3) in TNBC progression. Methods: The relationship between ZMIZ2 expression and clinical characteristics of TNBC was investigated. In vitro and in vivo experiments were performed to investigate the role of ZMIZ2 dysregulation in TNBC cell malignant behaviors. The regulatory relationship between ZMIZ2 and MCM3 was also explored. Transcriptome sequencing was performed to elucidate possible mechanisms underlying the ZMIZ2/MCM3… More >

  • Open Access

    ARTICLE

    Graph-Based Unified Settlement Framework for Complex Electricity Markets: Data Integration and Automated Refund Clearing

    Xiaozhe Guo1, Suyan Long2, Ziyu Yue2, Yifan Wang2, Guanting Yin1, Yuyang Wang1, Zhaoyuan Wu1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069820 - 27 December 2025

    Abstract The increasing complexity of China’s electricity market creates substantial challenges for settlement automation, data consistency, and operational scalability. Existing provincial settlement systems are fragmented, lack a unified data structure, and depend heavily on manual intervention to process high-frequency and retroactive transactions. To address these limitations, a graph-based unified settlement framework is proposed to enhance automation, flexibility, and adaptability in electricity market settlements. A flexible attribute-graph model is employed to represent heterogeneous multi-market data, enabling standardized integration, rapid querying, and seamless adaptation to evolving business requirements. An extensible operator library is designed to support configurable settlement… More >

  • Open Access

    ARTICLE

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

    Xue Zhang1, Jie Chen2,*, Zhihui Zhang3, Dewei Zhang3, Yuejiao Ming3, Xinde Zhang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069487 - 27 December 2025

    Abstract The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System (GBH-IES), which is a promising cogeneration approach characterized by multi-energy complementarity, flexible dispatch, and efficient utilization. This system can meet the demands for electricity, heat, and hydrogen while demonstrating significant performance in energy supply, energy conversion, economy, and environment (4E). To evaluate the GBH-IES system effectively, a comprehensive performance evaluation index system was constructed from the 4E dimensions. The fuzzy DEMATEL method was used to quantify the causal relationships between indicators, establishing a scientific input-output… More > Graphic Abstract

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

Displaying 1-10 on page 1 of 4828. Per Page