Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,220)
  • Open Access

    ARTICLE

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

    Belkis Sulbarán-Rangel1,*, Jorge Armando Caldera Siller1, Salvador García Enríquez2, José Anzaldo-Hernandez2, Jenny Arratia-Quijada3, Marianelly Esquivel Alfaro4

    Journal of Renewable Materials, Vol.13, No.5, pp. 849-863, 2025, DOI:10.32604/jrm.2025.02024-0061 - 20 May 2025

    Abstract In this research, the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied. The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application. The antibacterial properties of chitosan and silver nanoparticles are already known. However, the… More > Graphic Abstract

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

  • Open Access

    ARTICLE

    Facile Crosslinking of Hardwood Kraft Lignin for Sustainable Bio-Based Wood Adhesives

    Ega Cyntia Watumlawar1, Byung-Dae Park1,*, Long Yang2, Guanben Du2

    Journal of Renewable Materials, Vol.13, No.5, pp. 829-848, 2025, DOI:10.32604/jrm.2025.02024-0056 - 20 May 2025

    Abstract As the most abundant aromatic bio-based polymer, lignin has great potential as a sustainable feedstock for building crosslinked thermoset polymers as bio-based adhesives. However, the potential of hardwood kraft lignin (HKL) is limited due to its poor crosslinking reactivity. Hence, for the first time, the present study reports the facile oxidation of HKL involving a redox reaction with silver-ammonia complexes ([(AgNH3)2]+), primarily focusing on oxidation to produce reactive quinones and promote C–C linkages during reaction. This study aims to increases reactivity of oxidized HKL for effective crosslinking with monoethanolamine (MEA) for the development of bio-based wood… More > Graphic Abstract

    Facile Crosslinking of Hardwood Kraft Lignin for Sustainable Bio-Based Wood Adhesives

  • Open Access

    ARTICLE

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

    Flávia Naves Ferreira do Prado1, Michelle Garcia Gomes1, Marcela Piassi Bernardo1, Daniel Pasquini1,*, Anízio Márcio de Faria2, Luís Carlos de Morais3,*

    Journal of Renewable Materials, Vol.13, No.5, pp. 957-980, 2025, DOI:10.32604/jrm.2025.02024-0014 - 20 May 2025

    Abstract Alternative methods for biodiesel purification that focus on ease of operation, cost reduction, and elimination of contaminated residues or that are easier to treat have received more attention. The dry wash route was used as an alternative to the wet route in biodiesel production. Filter membranes were developed based on cellulose nanofibers as the matrix and sugarcane bagasse fibers or soy hulls, as reinforcement to the matrix, before and after two chemical treatments (carboxymethylation and regeneration with sulfuric acid). The filters were characterized by permeability capacity, morphology, wettability, porosity, SEM and mechanical properties. The filtered… More > Graphic Abstract

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

  • Open Access

    ARTICLE

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

    Vahideh Pourghasemi-Soufiani1, Farid Amidi-Fazli1,2,*

    Journal of Renewable Materials, Vol.13, No.5, pp. 915-929, 2025, DOI:10.32604/jrm.2025.02024-0009 - 20 May 2025

    Abstract Biodegradable packaging has emerged as a viable alternative to non-biodegradable polymers. This study explores different treatments of agar-carboxymethyl cellulose (CMC) nanocomposites developed via the casting method. We investigated the effects of varying glycerol levels (20%–60%) as a plasticizer and nanocellulose levels (0%–30%) as a filler on the properties of agar-CMC nanocomposites. Key properties analyzed included water vapor permeability, solubility in water, moisture absorption, water contact angle, color properties, and mechanical properties. The films exhibited low water vapor permeability, ranging from 2.50 × 10−11 g/msPa to 2.23 × 10−12 g/msPa. Water solubility of the films was below… More > Graphic Abstract

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

  • Open Access

    ARTICLE

    Electronic Structure Computations and Optical Spectroscopy Studies of ScNiBi and YNiBi Compounds

    Yury V. Knyazev, Semyon T. Baidak, Yury I. Kuz’min, Alexey V. Lukoyanov*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4085-4095, 2025, DOI:10.32604/cmc.2025.065091 - 19 May 2025

    Abstract The work presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds. Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling. These compounds are computed to be semiconductors. The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters. In ScNiBi and YNiBi, an intense peak at the energy of −2 eV is composed of the Ni 3d states in the conduction band, and the valence band mostly contains these states with some contributions from the… More >

  • Open Access

    ARTICLE

    Design a Computer Vision Approach to Localize, Detect and Count Rice Seedlings Captured by a UAV-Mounted Camera

    Trong Hieu Luu1, Phan Nguyen Ky Phuc2, Quang Hieu Ngo1,*, Thanh Tam Nguyen3, Huu Cuong Nguyen1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5643-5656, 2025, DOI:10.32604/cmc.2025.064007 - 19 May 2025

    Abstract This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields. Utilizing a drone equipped with a high-resolution camera, images are captured 14 days post-sowing at a consistent altitude of six meters, employing autonomous flight for uniform data acquisition. The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage. The methodology follows a two-step process: first, the GoogleNet deep learning network identifies the location and center points of rice plants. Then, the U-Net deep learning network performs classification and… More >

  • Open Access

    ARTICLE

    Blockchain-Based Electronic Health Passport for Secure Storage and Sharing of Healthcare Data

    Yogendra P. S. Maravi*, Nishchol Mishra

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5517-5537, 2025, DOI:10.32604/cmc.2025.063964 - 19 May 2025

    Abstract The growing demand for international travel has highlighted the critical need for reliable tools to verify travelers’ healthcare status and meet entry requirements. Personal health passports, while essential, face significant challenges related to data silos, privacy protection, and forgery risks in global sharing. To address these issues, this study proposes a blockchain-based solution designed for the secure storage, sharing, and verification of personal health passports. This innovative approach combines on-chain and off-chain storage, leveraging searchable encryption to enhance data security and optimize blockchain storage efficiency. By reducing the storage burden on the blockchain, the system… More >

  • Open Access

    ARTICLE

    Multi-Stage Hierarchical Feature Extraction for Efficient 3D Medical Image Segmentation

    Jion Kim, Jayeon Kim, Byeong-Seok Shin*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5429-5443, 2025, DOI:10.32604/cmc.2025.063815 - 19 May 2025

    Abstract Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments. However, decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation. Moreover, these methods face challenges in balancing global and local features, increasing the risk of errors in multi-scale segmentation. This issue is particularly pronounced when segmenting small and complex structures within the human body. To address this problem, we propose a multi-stage hierarchical architecture composed of a detector and a segmentor. The detector extracts regions of interest (ROIs) in a 3D image, while More >

  • Open Access

    ARTICLE

    Intelligent Spatial Anomaly Activity Recognition Method Based on Ontology Matching

    Longgang Zhao1, Seok-Won Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4447-4476, 2025, DOI:10.32604/cmc.2025.063691 - 19 May 2025

    Abstract This research addresses the performance challenges of ontology-based context-aware and activity recognition techniques in complex environments and abnormal activities, and proposes an optimized ontology framework to improve recognition accuracy and computational efficiency. The method in this paper adopts the event sequence segmentation technique, combines location awareness with time interval reasoning, and improves human activity recognition through ontology reasoning. Compared with the existing methods, the framework performs better when dealing with uncertain data and complex scenes, and the experimental results show that its recognition accuracy is improved by 15.6% and processing time is reduced by 22.4%. More >

  • Open Access

    ARTICLE

    Using Outlier Detection to Identify Grey-Sheep Users in Recommender Systems: A Comparative Study

    Yong Zheng*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4315-4328, 2025, DOI:10.32604/cmc.2025.063498 - 19 May 2025

    Abstract A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors. Collaborative filtering, a popular technique within recommender systems, predicts user interests by analyzing patterns in interactions and similarities between users, leveraging past behavior data to make personalized recommendations. Despite its popularity, collaborative filtering faces notable challenges, and one of them is the issue of grey-sheep users who have unusual tastes in the system. Surprisingly, existing research has not extensively explored outlier detection techniques to address the grey-sheep problem. To fill this research gap, this study conducts… More >

Displaying 1-10 on page 1 of 4220. Per Page