Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Experimental and Numerical Assessment on Seismic Performance of Earth Adobe Walls

    Zele Li1, Mohammad Noori2, Wael A. Altabey1,3,*

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 103-123, 2021, DOI:10.32604/sdhm.2021.011193 - 03 June 2021

    Abstract Earth buildings are common types of structures in most rural areas in all developing countries. Catastrophic failure and destruction of these structures under seismic loads always result in loss of human lives and economic losses. Wall is an important load-bearing component of raw soil buildings. In this paper, a novel approach is proposed to improve the strength and ductility of adobe walls. Three types of analyses, material properties, mechanical properties, and dynamic properties, are carried out for the seismic performance assessment of the adobe walls. These performed studies include that, material properties of the earth… More >

  • Open Access

    ARTICLE

    Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine

    Zhibin Lin1, Boyang Zhang1,2,*, Jiaqi Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 311-330, 2021, DOI:10.32604/cmes.2021.011556 - 22 December 2020

    Abstract Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column (SKCC) is a type of serious disaster in the underground coal extraction. Karst collapse column (KCC) developed in a confined aquifer occurs widely throughout northern China. A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3, 2013. In order to analyze the effect of the KCC influence zone’s (KCCIZ) width and the entry driving distance of the water inrush through the fractured channels of the SKCC, the stress, seepage, and impact dynamics coupling equations were used to… More >

  • Open Access

    ARTICLE

    Three-Dimensional Collapse Analysis for a Shallow Cavity in Layered Strata Based on Upper Bound Theorem

    Hongtao Wang1,2,*, Ping Liu1,2, Lige Wang3,4,*, Chi Liu5, Xin Zhang1,2, Luyao Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 375-391, 2020, DOI:10.32604/cmes.2020.08270 - 19 June 2020

    Abstract Layered rock strata are observed to be common during the excavation of tunnels or cavities, and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex forms and mechanical properties. In this paper, we propose a three-dimensional axisymmetric velocity field for roof collapse of shallow cavities in multi rock layers, by considering the influences of roof cross-section shapes, supporting pressure, ground overload, etc. The internal energy dissipation rate and work rates of external forces corresponding to the velocity field are computed by employing the Hoek-Brown strength criterion and its… More >

  • Open Access

    ARTICLE

    Quantum Generative Adversarial Network: A Survey

    Tong Li1, Shibin Zhang1, *, Jinyue Xia2

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 401-438, 2020, DOI:10.32604/cmc.2020.010551 - 20 May 2020

    Abstract Generative adversarial network (GAN) is one of the most promising methods for unsupervised learning in recent years. GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis, image super-resolution, video generation, image translation, etc. Compared with classical algorithms, quantum algorithms have their unique advantages in dealing with complex tasks, quantum machine learning (QML) is one of the most promising quantum algorithms with the rapid development of quantum technology. Specifically, Quantum generative adversarial network (QGAN) has shown the potential exponential quantum speedups in terms of performance. Meanwhile, QGAN also exhibits More >

  • Open Access

    ARTICLE

    Collapse Simulation and Response Assessment of a Large Cooling Tower Subjected to Strong Earthquake Ground Motions

    Tiancan Huang1, Hao Zhou2,*, Hamid Beiraghi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 691-715, 2020, DOI:10.32604/cmes.2020.09046 - 01 May 2020

    Abstract Large cooling towers in thermal power plants and nuclear power plants are likely to suffer from strong earthquakes during service periods. The resulting destructions of the cooling towers would endanger the power plants and threaten the security of the related areas. It is important to use effective means to evaluate the safety status of the cooling towers and guide further precautions as well as retrofitting efforts. This paper is therefore focused on an elaborate numerical investigation to the earthquake-induced collapses of a large cooling tower structure. A complete numerical work for simulation of material failure,… More >

  • Open Access

    ABSTRACT

    Simulations of Core Collapse Supernova Explosion on PEZY-SC Processors and GPUs

    Hideo Matsufuru1,*, Kohsuke Sumiyoshi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 90-90, 2019, DOI:10.32604/icces.2019.05390

    Abstract The core collapse supernovae are one of key phenomena to understand the history of the Universe and the origin of heavy elements. To understand their explosion mechanism, large scale numerical simulations are essential that require to solve a multi-physics system described by coupled equations of hydrodynamics and neutrino-radiation transfer in multidimensions. Since the neutrino transfer is governed by the Boltzmann equation in six-dimensional space, necessary computational resource rapidly increases as the number of grids in simulations grows. So far numerical studies have been performed mostly on massively parallel computers and only a few studies have… More >

  • Open Access

    ARTICLE

    Form Finding and Collapse Analysis of Cable Nets Under Dynamic Loads Based on Finite Particle Method

    Ying Yu1,*, Ping Xia1, Chunwei Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 73-89, 2018, DOI:10.31614/cmes.2018.04063

    Abstract This paper presents form finding and collapse analysis of cable net structure under strong wind using the finite particle method (FPM). As a kind of particle method, the theoretical fundamentals of the FPM are given. Methods to handle geometric and material nonlinearities of cable element are proposed. The fracture criterion and model for cable element are built to simulate the failure of cable nets. The form-finding and load analysis of two cable nets are then performed in order to initialize the successive of nonlinear analysis. The failure progress of cable nets under dynamic loads is More >

  • Open Access

    ARTICLE

    Numerical study on seepage property of karst collapse columns under particle migration

    Banghua Yao1,2, Jianping Wei1, Dengke Wang1, Dan Ma2,3, Zhanqing Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 81-100, 2013, DOI:10.3970/cmes.2013.091.081

    Abstract Presently, there is an increasing number of water outburst accidents in China as mining activity continues to develop to deeper ground. In these accidents, water outburst caused by karst collapse columns often results in serious damage, involving both the loss of lives and significant economic loss. Therefore, it is of utmost importance to study the seepage property and water outburst mechanism of karst collapse columns. In this paper, based on the seepage theory and the groundwater dynamic theory of porous media, a fluid-solid coupling model for karst collapse columns was built and then imported into… More >

  • Open Access

    ARTICLE

    A Study on the Stability of the Borehole in Shale, in Extended-reach Drilling

    Baohua Yu1, Chuanliang Yan1, Deli Gao1,2, Jinxiang Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 57-78, 2012, DOI:10.3970/cmes.2012.089.057

    Abstract Shale is easy to hydrate and often causes a collapse of the borehole during drilling, especially in drilling extended-reach wells (ERW). In order to solve the problem of collapse of the shale, the changinges in the mechanical properties of shale, as affected by hydration and water absorption, are studied in this paper, through experiments. The relationships between the mechanical properties of shale and the water content are established. The borehole-stability models, which couple chemistry and mechanics are established, by considering the anisotropy of swelling, based on the experimental results. The stability of shale in the… More >

  • Open Access

    ARTICLE

    Fire Safety Analysis of Plastic Steel Frames

    Rong-gang Zhang1,2, Hong-tao Zhang3 , Yu-xing Bai3, Jian-ling Gao3, Lai-yong Zhang2 , Bing-ye Xu1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 243-250, 2010, DOI:10.3970/cmc.2010.020.243

    Abstract Based on the upper bound theorem, the fire resistance is studied using the combination of element collapse mechanisms of steel frames, where the element collapse mechanisms are automatically determined from independent mechanisms. The fire limit load is calculated by solving a nonlinear mathematical programming. The computing procedure is programmed by FORTRAN language. Results show that this method is useful to find the collapse mechanism with the lowest fire limit load, which can provide a theoretical and practical way for the fire design of steel frame structure. More >

Displaying 11-20 on page 2 of 26. Per Page