Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    Improving Person Recognition for Single-Person-in-Photos: Intimacy in Photo Collections

    Xiaoyi Duan, Tianqi Zou, Chenyang Wang, Yu Gu, Xiuying Li*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070683 - 09 December 2025

    Abstract Person recognition in photo collections is a critical yet challenging task in computer vision. Previous studies have used social relationships within photo collections to address this issue. However, these methods often fail when performing single-person-in-photos recognition in photo collections, as they cannot rely on social connections for recognition. In this work, we discard social relationships and instead measure the relationships between photos to solve this problem. We designed a new model that includes a multi-parameter attention network for adaptively fusing visual features and a unified formula for measuring photo intimacy. This model effectively recognizes individuals More >

  • Open Access

    ARTICLE

    A Virtual Probe Deployment Method Based on User Behavioral Feature Analysis

    Bing Zhang, Wenqi Shi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.067470 - 09 December 2025

    Abstract To address the challenge of low survival rates and limited data collection efficiency in current virtual probe deployments, which results from anomaly detection mechanisms in location-based service (LBS) applications, this paper proposes a novel virtual probe deployment method based on user behavioral feature analysis. The core idea is to circumvent LBS anomaly detection by mimicking real-user behavior patterns. First, we design an automated data extraction algorithm that recognizes graphical user interface (GUI) elements to collect spatio-temporal behavior data. Then, by analyzing the automatically collected user data, we identify normal users’ spatio-temporal patterns and extract their… More >

  • Open Access

    ARTICLE

    A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain

    Lord Amoah1,2, Jinwei Wang1,2,3,*, Bernard-Marie Onzo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1635-1660, 2025, DOI:10.32604/cmes.2025.063992 - 30 May 2025

    Abstract Medical image segmentation, i.e., labeling structures of interest in medical images, is crucial for disease diagnosis and treatment in radiology. In reversible data hiding in medical images (RDHMI), segmentation consists of only two regions: the focal and nonfocal regions. The focal region mainly contains information for diagnosis, while the nonfocal region serves as the monochrome background. The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images, and manual segmentation is time-consuming, poorly reproducible, and operator-dependent. Implementing state-of-the-art deep learning (DL) models will facilitate key benefits, but the lack of domain-specific labels… More >

  • Open Access

    ARTICLE

    Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs

    Aadil Mushtaq Pandith1, Manni Kumar2, Naveen Kumar3, Nitin Goyal4,*, Sachin Ahuja2, Yonis Gulzar5, Rashi Rastogi6, Rupesh Gupta7

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 259-279, 2025, DOI:10.32604/cmc.2025.062608 - 26 March 2025

    Abstract Underwater wireless sensor networks (UWSNs) rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink. However, many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments. Additionally, conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink, commonly known as the energy hole issue. Moreover, cluster-based aggregation methods face significant challenges such as cluster head (CH) failures and collisions within clusters that degrade overall network performance. To address these limitations,… More >

  • Open Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165

    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Self-Transport of Multi-Scale Droplets Driven by Laplace Pressure Difference and Capillary Suction

    Fujian Zhang1, Ziyang Wang1, Xiang Gao1, Zhongqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011736

    Abstract Spontaneous droplet transport has broad application prospects in fields such as water collection and microfluidic chips. Despite extensive research in this area, droplet self-transport is still limited by issues such as slow transport velocity, short distance, and poor integrity. Here, a novel cross-hatch textured cone (CHTC) with multistage microchannels and circular grooves is proposed to realize ultrafast directional long-distance self-transport of multi-scale droplets. The CHTC triggers two modes of fluid transport: Droplet transport by Laplace pressure difference and capillary suction pressure-induced fluid transfer in microchannels on cone surfaces. By leveraging the coupling effect of the… More >

  • Open Access

    ARTICLE

    AnonymousTollPass: A Blockchain-Based Privacy-Preserving Electronic Toll Payment Model

    Jane Kim1, Soojin Lee1, Chan Yeob Yeun2, Seung-Hyun Seo1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3495-3518, 2024, DOI:10.32604/cmc.2024.050461 - 20 June 2024

    Abstract As big data, Artificial Intelligence, and Vehicle-to-Everything (V2X) communication have advanced, Intelligent Transportation Systems (ITS) are being developed to enable efficient and safe transportation systems. Electronic Toll Collection (ETC), which is one of the services included in ITS systems, is an automated system that allows vehicles to pass through toll plazas without stopping for manual payment. The ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system flow. To ensure secure and efficient toll payments, designing a distributed model for sharing toll payment information among untrusted toll service… More >

  • Open Access

    ARTICLE

    Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections

    Dmitry Gura1,2, Bo Dong3,*, Duaa Mehiar4, Nidal Al Said5

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1995-2014, 2024, DOI:10.32604/cmc.2024.048238 - 15 May 2024

    Abstract The motivation for this study is that the quality of deep fakes is constantly improving, which leads to the need to develop new methods for their detection. The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection, which is then used as input to the CNN. The customized Convolutional Neural Network method is the date augmented-based CNN model to generate ‘fake data’ or ‘fake images’. This study was carried out using Python and its libraries. We used 242 films from the dataset gathered by the Deep Fake… More >

  • Open Access

    ARTICLE

    Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks

    Haosong Gou1, Gaoyi Zhang1, Renê Ripardo Calixto2, Senthil Kumar Jagatheesaperumal3, Victor Hugo C. de Albuquerque2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1077-1102, 2024, DOI:10.32604/cmes.2024.047806 - 16 April 2024

    Abstract Large-scale wireless sensor networks (WSNs) play a critical role in monitoring dangerous scenarios and responding to medical emergencies. However, the inherent instability and error-prone nature of wireless links present significant challenges, necessitating efficient data collection and reliable transmission services. This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs. The primary goal is to enhance the reliability of data collection and transmission services, ensuring a comprehensive and practical approach. Our approach focuses on refining the hop-count-based routing scheme to achieve… More >

Displaying 1-10 on page 1 of 36. Per Page