Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Biodegradability and Compostability of Lignocellulosic Based Composite Materials

    Sudhakar Muniyasamy1, Andrew Anstey2, Murali M. Reddy1, Manju Misra1,2, Amar Mohanty1,2,*

    Journal of Renewable Materials, Vol.1, No.4, pp. 253-272, 2013, DOI:10.7569/JRM.2013.634117

    Abstract Lignocellulosic composites have attracted interest from both academia and industry due to their benefi cial environmental and sustainability attributes. The lignocellulosic industry has seen remarkable improvements in the development of composites for high performance applications. Both biodegradable as well as non-biodegradable polymers are used in the design and engineering of lignocellulosic composites. Biodegradability studies of lignocellulosic composites in soil and composting environments help in planning their end-life management. Biodegradability tests are complex and dependent on the environment in which the testing is carried out. Due to this, standards have been developed by international agencies such as the American Society for… More >

  • Open Access

    ARTICLE

    Sustainability Assessment of Protein-Soil Composite Materials for Limited Resource Environments

    Henning Roedel1, Isamar Rosa Plata1, Michael Lepech1,*, David Loftus2

    Journal of Renewable Materials, Vol.3, No.3, pp. 183-194, 2015, DOI:10.7569/JRM.2015.634107

    Abstract This article presents the sustainability assessment of a novel biocomposite material that is under investigation by NASA for use in construction in limited resource environments. The composite consists of soil particles solidified by a protein binding agent. Preliminary compressive strength data suggests the biocomposite could be used for numerous construction applications. To assess the biocomposite’s potential for use in sustainable construction, a comparative process-based life cycle assessment between biocomposite and concrete pavers was performed to analyze the life cycle primary energy and IMPACT 2002+ points of both types of pavers. Results show that the concrete pavers outperform the biocomposite pavers… More >

  • Open Access

    ARTICLE

    Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage

    Lisheng Deng1,2, Hongyu Huang2,*, Zhaohong He2, Shijie Li2, Zhen Huang2, Mitsuhiro Kubota3, You Zhou4,*, Dezhen Chen1

    Journal of Renewable Materials, Vol.10, No.11, pp. 2895-2906, 2022, DOI:10.32604/jrm.2022.019071

    Abstract Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density (1440 kJ/kg) and mild reaction process. However, the low hydration rate of LiOH limits the performance of low temperature thermochemical heat storage system as well as the thermal conductivity. In this study, porous-graphene/LiOH composite thermochemical heat storage materials with strong water sorption property and higher thermal conductivity were synthesized by hydrothermal process. The experimental results show that the hydration rate of the composites was greatly improved. The heat storage density of the composite materials was… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Mechanics of Composite Materials and Structures

    Jian Xiong1,*, Jinshui Yang2, Hui Li3, Wu Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 357-359, 2022, DOI:10.32604/cmes.2022.023418

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Crack Detection in Composite Materials Using McrowDNN

    R. Saveeth1,*, S. Uma Maheswari2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 983-1000, 2022, DOI:10.32604/iasc.2022.023455

    Abstract In the aerospace industry, composite materials are becoming more common. The presence of a crack in an aircraft makes it weaker and more dangerous, and it can lead to complete fracture and catastrophic failure. To predict the position and depth of a crack, various methods have been developed. For aircraft repair, crack diagnosis is extremely important. Even then, due to uncertainties arising from sources such as environmental conditions, packing, and intrinsic material property changes, accurate diagnosis in real engineering applications remains a challenge. Deep learning (DL) approaches have demonstrated powerful recognition potential in a variety of fields in recent years.… More >

  • Open Access

    ARTICLE

    Structural Design and Analysis of a Booster Arm Made of a Carbon Fiber Reinforced Epoxy Composite Material

    Songhua Hu*, Lixiong Sun, Hongying Xiong*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1083-1088, 2022, DOI:10.32604/fdmp.2022.019038

    Abstract An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method. The mechanical properties are also determined through stretching and compression performance tests. It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber. The used material succeeds in producing significant vibrations damping (vibration attenuation effect is superior to that obtained with conventional alloy materials). More >

  • Open Access

    ARTICLE

    Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw

    Nikola Vavřínová*, Kateřina Stejskalová, Jiří Teslík, Kateřina Kubenková, Jiří Majer

    Journal of Renewable Materials, Vol.10, No.7, pp. 1859-1873, 2022, DOI:10.32604/jrm.2022.018908

    Abstract This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards. This composite material is made of gypsum and reinforcing natural fibers. The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum. From this composite material, high-strength plasterboards could then be produced, which meet the higher demands of users than conventional gypsum plasterboards. For their production, natural waste materials would be used efficiently. As part of the development of new building… More >

  • Open Access

    ARTICLE

    On the Selection of a Composite Material for Two-Wheeler Foot Bracket Failure Prevention through Simulation and Mathematical Modeling

    S. M. Sivagami1, A. Bovas Herbert Bejaxhin2,*, R. Gayathri1, T. Raja Vijay1, K. Punitharani3, P. Keerthi Vasan1, M. Meignanamoorthy4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 521-536, 2022, DOI:10.32604/fdmp.2022.018752

    Abstract A foot bracket is a metal panel bracket used to mount and support the footrest in two-wheeler systems. It holds the footrest in place while rigidly supporting it. In working conditions, this element has often been observed to fail when specific load-fluctuation conditions are established at its rear end. Appropriate materials therefore need to be identified to overcome such a recurring failure. To address these issues, the present study has been implemented with the specific objective to determine the response of selected Al6061-T6 and Al7075-T6 Hybrid Metal Matrix Composites (HMMC). The results, obtained using the ANSYS Software, show that the… More >

  • Open Access

    ARTICLE

    Progressive Damage Analysis (PDA) of Carbon Fiber Plates with Out-of-Plane Fold under Pressure

    Tao Zhang, Jinglan Deng*, Jihui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 545-559, 2020, DOI:10.32604/cmes.2020.09536

    Abstract The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life. Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials, and to understand the patterns of defect evolution. Therefore, the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials, and a compressive performance test is conducted to quantify the influence of out-of-plane defects. The result shows that the compressive… More >

  • Open Access

    ARTICLE

    Green Composite Material Made from Typha latifolia Fibres Bonded with an Epoxidized Linseed Oil/Tall Oil-Based Polyamide Binder System

    Günter Wuzella1, Arunjunai Raj Mahendran1, Andreas Kandelbauer2,*

    Journal of Renewable Materials, Vol.8, No.5, pp. 499-512, 2020, DOI:10.32604/jrm.2020.09615

    Abstract Here, we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres. The composite was prepared either completely binder-less or bonded with 10% (w/w) of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide. The flexural modulus of elasticity, the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated. The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry (DSC) in combination with the iso-conversional… More >

Displaying 11-20 on page 2 of 67. Per Page