Chein-Shan Liu, Yu-Ling Ku
CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 151-178, 2005, DOI:10.3970/cmes.2005.009.151
Abstract In this paper we are concerned with the integration of a semi-discretized version of the Landau-Lifshitz equation, which is fundamental to describe the magnetization dynamics in micro/nano-scale magnetic systems. The resulting ordinary differential equations at the interior grid points are numerically integrated by a combination of the group preserving scheme derived by Liu (2004a) and the fourth-order Runge-Kutta method, abbreviated as GPS-RK4. The new method not only conserves the magnetization magnitude and has the fourth-order accuracy, but also preserves the Lyapunov property of the Landau-Lifshitz equation, namely the free energy is decreasing with time. In More >