Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Leveraging Convolutional Neural Network for COVID-19 Disease Detection Using CT Scan Images

    Mehedi Masud*, Mohammad Dahman Alshehri, Roobaea Alroobaea, Mohammad Shorfuzzaman

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 1-13, 2021, DOI:10.32604/iasc.2021.016800 - 12 May 2021

    Abstract In 2020, the world faced an unprecedented pandemic outbreak of coronavirus disease (COVID-19), which causes severe threats to patients suffering from diabetes, kidney problems, and heart problems. A rapid testing mechanism is a primary obstacle to controlling the spread of COVID-19. Current tests focus on the reverse transcription-polymerase chain reaction (RT-PCR). The PCR test takes around 4–6 h to identify COVID-19 patients. Various research has recommended AI-based models leveraging machine learning, deep learning, and neural networks to classify COVID-19 and non-COVID patients from chest X-ray and computerized tomography (CT) scan images. However, no model can… More >

  • Open Access

    ARTICLE

    UFC-Net with Fully-Connected Layers and Hadamard Identity Skip Connection for Image Inpainting

    Chung-Il Kim1, Jehyeok Rew2, Yongjang Cho2, Eenjun Hwang2,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3447-3463, 2021, DOI:10.32604/cmc.2021.017633 - 06 May 2021

    Abstract Image inpainting is an interesting technique in computer vision and artificial intelligence for plausibly filling in blank areas of an image by referring to their surrounding areas. Although its performance has been improved significantly using diverse convolutional neural network (CNN)-based models, these models have difficulty filling in some erased areas due to the kernel size of the CNN. If the kernel size is too narrow for the blank area, the models cannot consider the entire surrounding area, only partial areas or none at all. This issue leads to typical problems of inpainting, such as pixel More >

  • Open Access

    ARTICLE

    Deep Learning for Object Detection: A Survey

    Jun Wang1, Tingjuan Zhang2,*, Yong Cheng3, Najla Al-Nabhan4

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 165-182, 2021, DOI:10.32604/csse.2021.017016 - 23 April 2021

    Abstract Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people s life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of target detection, a comprehensive literature review of target detection and an overall discussion of the works closely related to it are More >

  • Open Access

    ARTICLE

    Eye Gaze Detection Based on Computational Visual Perception and Facial Landmarks

    Debajit Datta1, Pramod Kumar Maurya1, Kathiravan Srinivasan2, Chuan-Yu Chang3,*, Rishav Agarwal1, Ishita Tuteja1, V. Bhavyashri Vedula1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2545-2561, 2021, DOI:10.32604/cmc.2021.015478 - 13 April 2021

    Abstract The pandemic situation in 2020 brought about a ‘digitized new normal’ and created various issues within the current education systems. One of the issues is the monitoring of students during online examination situations. A system to determine the student’s eye gazes during an examination can help to eradicate malpractices. In this work, we track the users’ eye gazes by incorporating twelve facial landmarks around both eyes in conjunction with computer vision and the HAAR classifier. We aim to implement eye gaze detection by considering facial landmarks with two different Convolutional Neural Network (CNN) models, namely More >

  • Open Access

    ARTICLE

    Spatial-Resolution Independent Object Detection Framework for Aerial Imagery

    Sidharth Samanta1, Mrutyunjaya Panda1, Somula Ramasubbareddy2, S. Sankar3, Daniel Burgos4,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1937-1948, 2021, DOI:10.32604/cmc.2021.014406 - 13 April 2021

    Abstract Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms. The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research. With the evolution of optical sensors, aerial images are becoming more precise and larger, which leads to a new kind of problem for object detection algorithms. This paper proposes the “Sliding Region-based Convolutional Neural Network (SRCNN),” which is an extension of the Faster Region-based Convolutional Neural Network (RCNN) More >

  • Open Access

    ARTICLE

    Computer Vision-Control-Based CNN-PID for Mobile Robot

    Rihem Farkh1,5,*, Mohammad Tabrez Quasim2, Khaled Al jaloud1, Saad Alhuwaimel3, Shams Tabrez Siddiqui4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1065-1079, 2021, DOI:10.32604/cmc.2021.016600 - 22 March 2021

    Abstract With the development of artificial intelligence technology, various sectors of industry have developed. Among them, the autonomous vehicle industry has developed considerably, and research on self-driving control systems using artificial intelligence has been extensively conducted. Studies on the use of image-based deep learning to monitor autonomous driving systems have recently been performed. In this paper, we propose an advanced control for a serving robot. A serving robot acts as an autonomous line-follower vehicle that can detect and follow the line drawn on the floor and move in specified directions. The robot should be able to More >

  • Open Access

    ARTICLE

    Imperative Dynamic Routing Between Capsules Network for Malaria Classification

    G. Madhu1,*, A. Govardhan2, B. Sunil Srinivas3, Kshira Sagar Sahoo4, N. Z. Jhanjhi5, K. S. Vardhan1, B. Rohit6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 903-919, 2021, DOI:10.32604/cmc.2021.016114 - 22 March 2021

    Abstract Malaria is a severe epidemic disease caused by Plasmodium falciparum. The parasite causes critical illness if persisted for longer durations and delay in precise treatment can lead to further complications. The automatic diagnostic model provides aid for medical practitioners to avail a fast and efficient diagnosis. Most of the existing work either utilizes a fully connected convolution neural network with successive pooling layers which causes loss of information in pixels. Further, convolutions can capture spatial invariances but, cannot capture rotational invariances. Hence to overcome these limitations, this research, develops an Imperative Dynamic routing mechanism with fully… More >

  • Open Access

    ARTICLE

    PeachNet: Peach Diseases Detection for Automatic Harvesting

    Wael Alosaimi1,*, Hashem Alyami2, M. Irfan Uddin3

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1665-1677, 2021, DOI:10.32604/cmc.2021.014950 - 05 February 2021

    Abstract To meet the food requirements of the seven billion people on Earth, multiple advancements in agriculture and industry have been made. The main threat to food items is from diseases and pests which affect the quality and quantity of food. Different scientific mechanisms have been developed to protect plants and fruits from pests and diseases and to increase the quantity and quality of food. Still these mechanisms require manual efforts and human expertise to diagnose diseases. In the current decade Artificial Intelligence is used to automate different processes, including agricultural processes, such as automatic harvesting.… More >

  • Open Access

    ARTICLE

    Recognition and Detection of Diabetic Retinopathy Using Densenet-65 Based Faster-RCNN

    Saleh Albahli1, Tahira Nazir2,*, Aun Irtaza2, Ali Javed3

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1333-1351, 2021, DOI:10.32604/cmc.2021.014691 - 05 February 2021

    Abstract Diabetes is a metabolic disorder that results in a retinal complication called diabetic retinopathy (DR) which is one of the four main reasons for sightlessness all over the globe. DR usually has no clear symptoms before the onset, thus making disease identification a challenging task. The healthcare industry may face unfavorable consequences if the gap in identifying DR is not filled with effective automation. Thus, our objective is to develop an automatic and cost-effective method for classifying DR samples. In this work, we present a custom Faster-RCNN technique for the recognition and classification of DR… More >

  • Open Access

    ARTICLE

    Computer Vision Based Robotic Arm Controlled Using Interactive GUI

    Muhatasim Intisar1, Mohammad Monirujjaman Khan1,*, Mohammad Rezaul Islam1, Mehedi Masud2

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 533-550, 2021, DOI:10.32604/iasc.2021.015482 - 18 January 2021

    Abstract This paper presents the design and implementation of a robotic vision system operated using an interactive Graphical User Interface (GUI) application. As robotics continue to become a more integral part of the industrial complex, there is a need for automated systems that require minimal to no user training to operate. With this motivation in mind, the system is designed so that a beginner user can operate the device with very little instruction. The application allows users to determine their desired object, which will be picked up and placed by a robotic arm into the target… More >

Displaying 91-100 on page 10 of 106. Per Page