Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (550)
  • Open Access

    ARTICLE

    Multi-VMs Intrusion Detection for Cloud Security Using Dempster-shafer Theory

    Chak Fong Cheang1,*, Yiqin Wang1, Zhiping Cai2, Gen Xu1

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 297-306, 2018, DOI:10.32604/cmc.2018.03808

    Abstract Cloud computing provides easy and on-demand access to computing resources in a configurable pool. The flexibility of the cloud environment attracts more and more network services to be deployed on the cloud using groups of virtual machines (VMs), instead of being restricted on a single physical server. When more and more network services are deployed on the cloud, the detection of the intrusion likes Distributed Denial-of-Service (DDoS) attack becomes much more challenging than that on the traditional servers because even a single network service now is possibly provided by groups of VMs across the cloud system. In this paper, we… More >

  • Open Access

    ARTICLE

    A Proxy Re-Encryption with Keyword Search Scheme in Cloud Computing

    Yongli Tang1, Huanhuan Lian1, Zemao Zhao2, Xixi Yan1,*

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 339-352, 2018, DOI: 10.3970/cmc.2018.02965

    Abstract With the widespread use of cloud computing technology, more and more users and enterprises decide to store their data in a cloud server by outsourcing. However, these huge amounts of data may contain personal privacy, business secrets and other sensitive information of the users and enterprises. Thus, at present, how to protect, retrieve, and legally use the sensitive information while preventing illegal accesses are security challenges of data storage in the cloud environment. A new proxy re-encryption with keyword search scheme is proposed in this paper in order to solve the problem of the low retrieval efficiency of the encrypted… More >

  • Open Access

    ARTICLE

    On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing

    Lizhi Xiong1,*, Yunqing Shi2

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 523-539, 2018, DOI: 10.3970/cmc.2018.01791

    Abstract Advanced cloud computing technology provides cost saving and flexibility of services for users. With the explosion of multimedia data, more and more data owners would outsource their personal multimedia data on the cloud. In the meantime, some computationally expensive tasks are also undertaken by cloud servers. However, the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data. Recently, this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data. In this paper, two reversible data hiding schemes are proposed for encrypted… More >

  • Open Access

    ARTICLE

    An Optimized Labeling Scheme for Reachability Queries

    Xian Tang1,*, Ziyang Chen2, Haiyan Zhang3, Xiang Liu1, Yunyu Shi1, Asad Shahzadi4

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 267-283, 2018, DOI:10.3970/cmc.2018.01839

    Abstract Answering reachability queries is one of the fundamental graph operations. Existing approaches either accelerate index construction by constructing an index that covers only partial reachability relationship, which may result in performing cost traversing operation when answering a query; or accelerate query answering by constructing an index covering the complete reachability relationship, which may be inefficient due to comparing the complete node labels. We propose a novel labeling scheme, which covers the complete reachability relationship, to accelerate reachability queries processing. The idea is to decompose the given directed acyclic graph (DAG) G into two subgraphs, G1 and G2. For G1, we… More >

  • Open Access

    ARTICLE

    Securing Display Path for Security-Sensitive Applications on Mobile Devices

    Jinhua Cui1,2, Yuanyuan Zhang3, Zhiping Cai1,*, Anfeng Liu4, Yangyang Li5

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 17-35, 2018, DOI:10.3970/cmc.2018.055.017

    Abstract While smart devices based on ARM processor bring us a lot of convenience, they also become an attractive target of cyber-attacks. The threat is exaggerated as commodity OSes usually have a large code base and suffer from various software vulnerabilities. Nowadays, adversaries prefer to steal sensitive data by leaking the content of display output by a security-sensitive application. A promising solution is to exploit the hardware visualization extensions provided by modern ARM processors to construct a secure display path between the applications and the display device. In this work, we present a scheme named SecDisplay for trusted display service, it… More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

  • Open Access

    ARTICLE

    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2, J. L. Gabayno2,4

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 125-140, 2014, DOI:10.3970/cmc.2014.042.125

    Abstract Automated optical inspection systems installed in production lines help ensure high throughput by speeding up inspection of defects that are otherwise difficult to detect using the naked eye. However, depending on the size and surface properties of the products such as micro-cracks on touchscreen panels glass cover, the detection speed and accuracy are limited by the imaging module and lighting technique. Therefore the current inspection methods are still delegated to a few qualified personnel whose limited capacity has been a huge tradeoff for high volume production. In this study, an automated optical technology for in-line surface defect inspection is developed… More >

  • Open Access

    ARTICLE

    Soft Computing for Terahertz Metamaterial Absorber Design for Biomedical Application

    Balamati Choudhury1, Pavani Vijay Reddy1, Sanjana Bisoyi1, R. M. Jha1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 135-146, 2013, DOI:10.3970/cmc.2013.037.135

    Abstract The terahertz region of the electromagnetic spectrum plays a vital role in biomedical imaging because of its sensitivity to vibrational modes of biomolecules. Advances in broadband terahertz imaging have been emerging in the field of biomedical spectroscopy. Biomedical imaging is used to distinguish between the infected (cancer) and the non-infected tissue, which requires broad band and highly efficient radar absorbing material (RAM) designs (to obtain high resolution image of the tissue). In this paper, a metamaterial broadband RAM design is proposed towards biomedical spectroscopy applications in the THz region. The particle swarm optimization (PSO) algorithm is used for the design… More >

  • Open Access

    ARTICLE

    An Interaction Integral Method for Computing Fracture Parameters in Functionally Graded Magnetoelectroelastic Composites

    J. Sladek1, V. Sladek1, P. Stanak1, Ch. Zhang2, M. Wünsche2

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 35-68, 2011, DOI:10.3970/cmc.2011.023.035

    Abstract A contour integral method is developed for the computation of stress intensity, electric and magnetic intensity factors for cracks in continuously nonhomogeneous magnetoelectroelastic solids under a transient dynamic load. It is shown that the asymptotic fields in the crack-tip vicinity in a continuously nonhomogeneos medium are the same as in a homogeneous one. A meshless method based on the local Petrov-Galerkin approach is applied for the computation of the physical fields occurring in the contour integral expressions of intensity factors. A unit step function is used as the test functions in the local weak-form. This leads to local integral equations… More >

  • Open Access

    ARTICLE

    Anomaly Detection

    Nadipuram R. Prasad1, Salvador Almanza-Garcia1, Thomas T. Lu2

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 1-22, 2009, DOI:10.3970/cmc.2009.014.001

    Abstract The paper presents a revolutionary framework for the modeling, detection, characterization, identification, and machine-learning of anomalous behavior in observed phenomena arising from a large class of unknown and uncertain dynamical systems. An evolved behavior would in general be very difficult to correct unless the specific anomalous event that caused such behavior can be detected early, and any consequence attributed to the specific anomaly following its detection. Substantial investigative time and effort is required to back-track the cause for abnormal behavior and to recreate the event sequence leading to such abnormal behavior. The need to automatically detect anomalous behavior is therefore… More >

Displaying 541-550 on page 55 of 550. Per Page