Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

    Long Chen1, Yan Yu1, Yanpeng Shang1, Zhonghou Wang1,*, Jing Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 817-846, 2024, DOI:10.32604/cmes.2023.031595

    Abstract Gears are pivotal in mechanical drives, and gear contact analysis is a typically difficult problem to solve. Emerging isogeometric analysis (IGA) methods have developed new ideas to solve this problem. In this paper, a three-dimensional body parametric gear model of IGA is established, and a theoretical formula is derived to realize single-tooth contact analysis. Results were benchmarked against those obtained from commercial software utilizing the finite element analysis (FEA) method to validate the accuracy of our approach. Our findings indicate that the IGA-based contact algorithm successfully met the Hertz contact test. When juxtaposed with the FEA approach, the IGA method… More > Graphic Abstract

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

  • Open Access

    ARTICLE

    Coupled Crack /Contact Analysis for Composite Material Containing Periodic Cracks under Periodic Rigid Punches Action

    Yue-Ting Zhou1, Xing Li2, De-Hao Yu3, Kang Yong Lee1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.2, pp. 163-190, 2010, DOI:10.3970/cmes.2010.063.163

    Abstract In this paper, a coupled crack/contact model is established for the composite material with arbitrary periodic cracks indented by periodic punches. The contact of crack faces is considered. Frictional forces are modeled to arise between the punch foundation and the composite material boundary. Kolosov-Muskhelisvili complex potentials with Hilbert kernels are constructed, which satisfy the continuity conditions of stress and displacement along the interface identically. The considered problem is reduced to a system of singular integral equations of first and second kind with Hilbert kernels. Bounded functions are defined so that singular integral equations of Hilbert type can be transformed to… More >

  • Open Access

    ARTICLE

    Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme

    Syh-Tsang Jenq1,2, Yuen-Sheng Chiu2

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 33-58, 2009, DOI:10.3970/cmc.2009.011.033

    Abstract Current work studies the transient hydroplaning behavior of 200 kPa inflated pneumatic radial tires with various types of tread patterns. Tires were numerically loaded with a quarter car weight of 4 kN, and then accelerated from rest rolling over a water film with a thickness of 5, 10 and 15 mm on top of a flat pavement. Tire structure is composed of outer rubber tread and inner fiber reinforcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were, respectively, used to describe the mechanical behavior of rubber material and composite reinforcing layers. The tire hydroplaning phenomenon… More >

Displaying 1-10 on page 1 of 3. Per Page