Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

  • Open Access

    ARTICLE

    Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes

    Zhaoan Wang1, Kishlay Jha2, Shaoping Xiao1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1319-1336, 2024, DOI:10.32604/cmc.2024.055809 - 15 October 2024

    Abstract Climate change poses significant challenges to agricultural management, particularly in adapting to extreme weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning (RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning (CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established… More >

Displaying 1-10 on page 1 of 2. Per Page