Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Comparative Computer Modeling of Carbon-Polymer Composites with Carbon or Graphite Microfibers or Carbon Nanotubes

    A.N. Guz1, J.J.Rushchitsky1, I.A.Guz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.3, pp. 139-156, 2008, DOI:10.3970/cmes.2008.026.139

    Abstract The basic approach is offered for problems of nanocomposites and their mechanical properties, which includes a short review of modern problems in nanomechanics of materials. The fibrous carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes are especially discussed. The basic model of the linear or nonlinear elastically deforming micro- and nanocomposites is considered. Within the framework of this model, the comparative computer modeling is performed. The modeling permits to observe the features in prediction of values of basic mechanical constants. These results are utilized on next step of modeling -- studying the peculiarities of wave propagation in particular… More >

  • Open Access

    ARTICLE

    Suppressing Gray-Scale Elements in Topology Optimization of Continua Using Modified Optimality Criterion Methods

    Yixian Du1,2, De Chen1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.1, pp. 53-70, 2012, DOI:10.3970/cmes.2012.086.053

    Abstract This study proposes a new topology optimization method for continuum structures, which includes modified heuristic optimality criteria in conjunction with the SIMP scheme to suppress gray-scale elements occurred in topology optimization of continua through smoothed Heaviside function. In the process of numerical implementation, the gray scale elements are suppressed to approach the binary bounds of 0 or 1 by utilizing the proposed approach and the corresponding convergence criterion. Two typical numerical examples are used to demonstrate the effectiveness of the proposed method in suppressing the gray-scale elements with intermediate densities, as well as the efficiency of this method in the… More >

  • Open Access

    ARTICLE

    A Continuum-Microscopic Method Based on IRBFs and Control Volume Scheme for Viscoelastic Fluid Flows

    C.-D. Tran1, N. Mai-Duy1,1, K. Le-Cao1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.6, pp. 499-520, 2012, DOI:10.3970/cmes.2012.085.499

    Abstract A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is… More >

  • Open Access

    ARTICLE

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Continuum/Discontinuum Transformation

    Li Shan, Ning Cui, Ming Cheng, Kaixin Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 353-384, 2012, DOI:10.3970/cmes.2012.083.353

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is established for modeling the elastoplastic behavior of solid materials. Failure criteria are introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from a continuum to a discontinuum. In addition, a meshless… More >

  • Open Access

    ARTICLE

    Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints

    K.I. Tserpes1, A.S. Koumpias1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 169-182, 2012, DOI:10.32604/cmes.2012.083.169

    Abstract In this work, a comparison between a cohesive zone model and a continuum damage model in predicting the mode-I fracture behavior of adhesively bonded joints is performed on the basis of reliability and applicability. The cohesive zone model (CZM) is based on an exponential traction law characterizing the behavior of the interface elements. The continuum damage model (CDM) is based on the stiffness degradation of adhesive elements imposed by a damage parameter. Both models have been implemented by means of a 3D finite element model. Mode-I fracture behavior of the bonded joints was characterized using the DCB specimen. Firstly, the… More >

  • Open Access

    ARTICLE

    A Stabilized Finite Element Formulation for Continuum Models of Traffic Flow

    Durgesh Vikram1, Sanjay Mittal2, Partha Chakroborty1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 237-260, 2011, DOI:10.3970/cmes.2011.079.237

    Abstract A stabilized finite element formulation is presented to solve the governing equations for traffic flow. The flow is assumed to be one-dimensional. Both, PW-type (Payne-Whitham) 2-equation models and the LWR-type (Lighthill-Whitham-Richards) 1-equation models are considered. The SUPG (Streamline-Upwind/Petrov-Galerkin) and shock capturing stabilizations are utilized. These stabilizations are sufficient for the 1-equation models. However, an additional stabilization is necessary for the 2-equation models. For the first time, such a stabilization is proposed. It arises from the coupling between the two equations and is termed as IEPG (Inter-Equation/Petrov-Galerkin) stabilization. Two behavioral models are studied: Greenshields' (GS) and Greenberg's (GB) models. Numerical tests… More >

  • Open Access

    ARTICLE

    A High-Fidelity Cable-Analogy Continuum Triangular Element for the Large Strain, Large Deformation, Analysis of Membrane Structures

    P.D.Gosling1,2, L. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 203-252, 2011, DOI:10.3970/cmes.2011.071.203

    Abstract The analysis of a continuum membrane by means of a discrete network of cables or bars is an efficient and readily tractable approach to the solution of a complex mechanics problem. However, is so doing, compromises are made in the quality of the approximation of the strain field. It is shown in this paper that the original form of the cable-analogy continuum triangle formulation is degraded by an inherent assumption of small strains in the underlying equations, in which the term ßmall" is shown to be "negligibly small". A revised version of this formulation is proposed in which a modification… More >

  • Open Access

    ARTICLE

    Concurrent Atomistic/Continuum Simulation of Thermo-Mechanical Coupling Phenomena

    Xianqiao Wang1, James D. Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.2, pp. 150-170, 2010, DOI:10.3970/cmes.2010.062.150

    Abstract The concurrent methods for coupling molecular dynamics with continuum thermodynamics offer a myriad of challenging problems, mostly related with energy transmission, wave reflection, and damage propagation at the interfaces between the continuum description and the discrete description. In this work, by virtue of the atomistic field theory (AFT), we present an analysis to reconcile the compatibility between atomic region and continuum region and to calculate the matching temperature field of a heat conduction problem in a concurrent atomistic/continuum system. First, formulation of AFT with finite temperature and its corresponding finite element implementation are briefly introduced. Then we develop a new… More >

  • Open Access

    ARTICLE

    Multigrid Implementation of Cellular Automata for Topology Optimization of Continuum Structures

    R. Zakhama1,2,3, M.M. Abdalla2, H. Smaoui1,3, Z. Gürdal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.051.001

    Abstract A multigrid accelerated cellular automata algorithm for two and three dimensional continuum topology optimization problems is presented. The topology optimization problem is regularized using the traditional SIMP approach. The analysis rules are derived from the principle of minimum total potential energy, and the design rules are derived based on continuous optimality criteria interpreted as local Kuhn-Tucker conditions. Three versions of the algorithm are implemented; a cellular automata based design algorithm, a baseline multigrid algorithm for analysis acceleration and a full multigrid integrated analysis and design algorithm. It is shown that the multigrid accelerated cellular automata scheme is a powerful tool… More >

  • Open Access

    ARTICLE

    A Finite Volume Meshless Local Petrov-Galerkin Method for Topology Optimization Design of the Continuum Structures

    Juan Zheng1,2,3, Shuyao Long1,2, Yuanbo Xiong1,2, Guangyao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 19-34, 2009, DOI:10.3970/cmes.2009.042.019

    Abstract In this paper, the finite volume meshless local Petrov-Galerkin method (FVMLPG) is applied to carry out a topology optimization design for the continuum structures. In FVMLPG method, the finite volume method is combined with the meshless local Petrov-Galekin method, and both strains as well as displacements are independently interpolated, at randomly distributed points in a local domain, using the moving least squares (MLS) approximation. The nodal values of strains are expressed in terms of the independently interpolated nodal values of displacements, by simple enforcing the strain-displacement relationships directly. Considering the relative density of nodes as design variable, and the minimization… More >

Displaying 41-50 on page 5 of 64. Per Page