Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (116)
  • Open Access

    ARTICLE

    A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture

    C. Zheng1, S. C. Wu2,3,4, X.H.Tang1, J. H. Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.2, pp. 149-178, 2008, DOI:10.3970/cmes.2008.038.149

    Abstract A novel meshfree poly-cell Galerkin method is developed for problems of elasticity and fracture. To improve accuracy, a poly-cell support is proposed to ensure the alignment of shape function support and the integration domain. By orthonormalizing basis functions, the improved moving least-square is formulated soundly, in which frequent matrix inversions are avoided. The Nitsche's method is introduced to treat the essential boundary conditions. It is found that computed solutions are more accurate than those obtained using the circle support used in standard MLS. Furthermore, numerical results present the superconvergent property, compared with the theoretical values in both displacement and energy… More >

  • Open Access

    ARTICLE

    An Accurate Refinement Scheme for Inverse Heat Source Location Identifications

    Leevan Ling1, Tomoya Takeuchi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.2, pp. 99-110, 2007, DOI:10.3970/cmes.2007.020.099

    Abstract We aim to identify the unknown source locations in a two-dimensional heat equation from scattered measurements. In [Inverse Problems, 22(4):1289--1305, 2006], we proposed a numerical procedure that identifies the unknown source locations of 2D heat equation solely based on three measurement points. Due to the nonlinearity and complexity of the problem, the quality of the resulting estimations is often poor especially when the number of unknown is large. In this paper, we purpose a linear refinement scheme that takes the outputs of the existing nonlinear algorithm as initial guesses and iteratively improves on the accuracy of the estimations; the convergence… More >

  • Open Access

    ARTICLE

    Analytical Solution of the Thermal Behavior of a Circulating Porous Heat Exchanger

    R. Henda1, W. Quesnel2, Z. Saghir3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 237-244, 2008, DOI:10.3970/fdmp.2008.004.237

    Abstract The transient thermal behavior of a two-dimensional circulating porous bed is analytically investigated. A one-energy equation model, representing both the gas and solid phases via a unified temperature, is employed to describe the thermal behavior of the circulating bed. The latter is essentially a tube and shell heat exchanger commonly used in technologically important applications. The model equation is transformed into a simpler set of partial differential equations using an analytical procedure. The analytical solution, based on the method of separation of variables and the principle of superposition, is formulated for the calculation of the temperature distribution in the radial… More >

  • Open Access

    ARTICLE

    Structural Continuous Dependence in Micropolar Porous Bodies

    M. Marin1,2, A.M. Abd-Alla3,4, D. Raducanu1, S.M. Abo-Dahab3,5

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 107-126, 2015, DOI:10.3970/cmc.2015.045.107

    Abstract Our study is dedicated to mixed initial boundary value problem for porous micropolar bodies. We prove that the solution of this problem depends continuously on coefficients which couple the micropolar deformation equations with the equations that model the evolution of voids. The evaluation of this dependence is made by using an appropriate measure. More >

  • Open Access

    ARTICLE

    The Scalar Homotopy Method for Solving Non-Linear Obstacle Problem

    Chia-Ming Fan1,2, Chein-Shan Liu3, Weichung Yeih1, Hsin-Fang Chan1

    CMC-Computers, Materials & Continua, Vol.15, No.1, pp. 67-86, 2010, DOI:10.3970/cmc.2010.015.067

    Abstract In this study, the nonlinear obstacle problems, which are also known as the nonlinear free boundary problems, are analyzed by the scalar homotopy method (SHM) and the finite difference method. The one- and two-dimensional nonlinear obstacle problems, formulated as the nonlinear complementarity problems (NCPs), are discretized by the finite difference method and form a system of nonlinear algebraic equations (NAEs) with the aid of Fischer-Burmeister NCP-function. Additionally, the system of NAEs is solved by the SHM, which is globally convergent and can get rid of calculating the inverse of Jacobian matrix. In SHM, by introducing a scalar homotopy function and… More >

  • Open Access

    ARTICLE

    Convergence Properties of Genetic Algorithmsin a Wide Variety of Noisy Environments

    TakehikoNakama1

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 35-60, 2009, DOI:10.3970/cmc.2009.014.035

    Abstract Random noise perturbs objective functions in practical optimization problems, and genetic algorithms (GAs) have been proposed as an effective optimization tool for dealing with noisy objective functions. In this paper, we investigate GAs in a variety of noisy environments where fitness perturbation can occur in any form-for example, fitness evaluations can be concurrently disturbed by additive and multiplicative noise. We reveal the convergence properties of GAs by constructing and analyzing a Markov chain that explicitly models the evolution of the algorithms in noisy environments. We compute the one-step transition probabilities of the Markov chain and show that the chain has… More >

Displaying 111-120 on page 12 of 116. Per Page