Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    Noninvasive Hemoglobin Estimation with Adaptive Lightweight Convolutional Neural Network Using Wearable PPG

    Florentin Smarandache1, Saleh I. Alzahrani2, Sulaiman Al Amro3, Ijaz Ahmad4, Mubashir Ali5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3715-3735, 2025, DOI:10.32604/cmes.2025.068736 - 30 September 2025

    Abstract Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body. Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes, where abnormal hemoglobin levels can indicate significant health issues. Traditional methods for hemoglobin measurement are invasive, causing pain, risk of infection, and are less convenient for frequent monitoring. PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure, sleep, blood glucose, and stress analysis. In this work, we propose a hemoglobin estimation method using an adaptive lightweight… More >

  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

  • Open Access

    ARTICLE

    Enhancing Heart Sound Classification with Iterative Clustering and Silhouette Analysis: An Effective Preprocessing Selective Method to Diagnose Rare and Difficult Cardiovascular Cases

    Sami Alrabie#,*, Ahmed Barnawi#

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2481-2519, 2025, DOI:10.32604/cmes.2025.067977 - 31 August 2025

    Abstract In the effort to enhance cardiovascular diagnostics, deep learning-based heart sound classification presents a promising solution. This research introduces a novel preprocessing method: iterative k-means clustering combined with silhouette score analysis, aimed at downsampling. This approach ensures optimal cluster formation and improves data quality for deep learning models. The process involves applying k-means clustering to the dataset, calculating the average silhouette score for each cluster, and selecting the cluster with the highest score. We evaluated this method using 10-fold cross-validation across various transfer learning models from different families and architectures. The evaluation was conducted on… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading

    Wael A. Altabey*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1145-1165, 2025, DOI:10.32604/sdhm.2025.068922 - 05 September 2025

    Abstract In the fabrication and monitoring of parts in composite structures, which are being used more and more in a variety of engineering applications, the prediction and fatigue failure detection in composite materials is a difficult problem. This difficulty arises from several factors, such as the lack of a comprehensive investigation of the fatigue failure phenomena, the lack of a well-defined fatigue damage theory used for fatigue damage prediction, and the inhomogeneity of composites because of their multiple internal borders. This study investigates the fatigue behavior of carbon fiber reinforced with epoxy (CFRE) laminated composite plates… More > Graphic Abstract

    An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading

  • Open Access

    ARTICLE

    Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques

    Hussam Qushtom, Ahmad Hasasneh*, Sari Masri

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1379-1395, 2025, DOI:10.32604/cmc.2025.061995 - 09 June 2025

    Abstract This study presents an enhanced convolutional neural network (CNN) model integrated with Explainable Artificial Intelligence (XAI) techniques for accurate prediction and interpretation of wheat crop diseases. The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management. To evaluate the model, a dataset was collected from wheat fields in Kotli, Azad Kashmir, Pakistan, and tested across multiple data splits. The proposed model demonstrates improved stability, faster convergence, and higher classification accuracy. The results show significant improvements in prediction accuracy and stability compared to prior works,… More >

  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

  • Open Access

    ARTICLE

    A Generative Model-Based Network Framework for Ecological Data Reconstruction

    Shuqiao Liu1, Zhao Zhang2,*, Hongyan Zhou1, Xuebo Chen1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 929-948, 2025, DOI:10.32604/cmc.2024.057319 - 03 January 2025

    Abstract This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems. Combining Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis data with Variation Autoencoder (VAE) and Generative Adversarial Network (GAN) the network framework model (SAE-GAN), is proposed for environmental data reconstruction. The model combines two popular generative models, GAN and VAE, to generate features conditional on categorical data embedding after SWOT Analysis. The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data. Reconstructed data is… More >

  • Open Access

    REVIEW

    A Survey on Supervised, Unsupervised, and Semi-Supervised Approaches in Crowd Counting

    Jianyong Wang1, Mingliang Gao1, Qilei Li2, Hyunbum Kim3, Gwanggil Jeon3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3561-3582, 2024, DOI:10.32604/cmc.2024.058637 - 19 December 2024

    Abstract Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety. Crowd counting has attracted considerable attention in the field of computer vision, leading to the development of numerous advanced models and methodologies. These approaches vary in terms of supervision techniques, network architectures, and model complexity. Currently, most crowd counting methods rely on fully supervised learning, which has proven to be effective. However, this approach presents challenges in real-world scenarios, where labeled data and ground-truth… More >

  • Open Access

    ARTICLE

    Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4149-4169, 2024, DOI:10.32604/cmc.2024.058052 - 19 December 2024

    Abstract The proliferation of Internet of Things (IoT) technology has exponentially increased the number of devices interconnected over networks, thereby escalating the potential vectors for cybersecurity threats. In response, this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks (CNN), Autoencoders, and Long Short-Term Memory (LSTM) networks—to engineer an advanced Intrusion Detection System (IDS) specifically designed for IoT environments. Utilizing the comprehensive UNSW-NB15 dataset, which encompasses 49 distinct features representing varied network traffic characteristics, our methodology focused on meticulous data preprocessing including cleaning, normalization, and strategic feature selection to enhance model performance. A robust… More >

Displaying 1-10 on page 1 of 45. Per Page