Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Investigation on Purine Corrosion Inhibitions via Quantum Chemical Calculation

    Fengjuan Wang1,2, Shengping Wu1,2,*, Jinyang Jiang1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 1-10, 2018, DOI:10.31614/cmes.2018.03834

    Abstract Corrosion inhibition performances of three purine derivatives were investigated systematically by employing DFT and molecular modeling. The relationship between macroscopic inhibition efficiency and quantum chemical properties was discussed from multiple perspectives, based on frontier orbital theory, and Fukui function theories. Comparative experimental and theoretical studies were taken, indicating the inhibition efficiency could be analyzed in the order of guanine <2,6-diaminopurine <2,6-dithiopurine. The sulphur atom (S5) was validated to be the most susceptible site for electrophile via quantitative surface analysis. More >

  • Open Access

    ARTICLE

    Analysis of the Properties and Anti-Seepage Mechanism of PBFC Slurry in Landfill

    Guozhong Dai1,*, Jia Zhu2, Guicai Shi3, Yanmin Sheng4, Shujin Li5

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 169-190, 2017, DOI:10.3970/sdhm.2017.011.169

    Abstract As the landfill leachate has strong pollution on the underground water, surface water and soil. This paper develops the formula of impervious slurry with low permeability, good durability, strong adsorption and retardant based on the bentonite which is modified by polyvinyl alcohol. Through the simulation experiment, the optimum formula of polyvinyl alcohol is 0.2%. Its osmotic coefficient for 28 days is 0.53×10-8~1.86×10-8 cm/s and compressive strength is 0.5~1.5 MPa as well. This paper study on the retardant rule of the consolidation of slurry against the pollution in the leachate by self-made percolation instrument. The experiment More >

  • Open Access

    ARTICLE

    Structural Integrity and Health Monitoring of Road and Railway Tanks based on Acoustic Emission

    G. Savaidis1, M. Malikoutsakis1, A. Jagenbrein2, A. Savaidis3, M. Soare4, M.V. Predoi4, A. Soare4, I.C. Diba4

    Structural Durability & Health Monitoring, Vol.9, No.2, pp. 129-154, 2013, DOI:10.32604/sdhm.2013.009.129

    Abstract Development of corrosion or/and fatigue crack propagation are the most common causes of structural degradation in road and railway tank vessels. An acoustic emission based monitoring procedure in conjunction with follow-up nondestructive testing is here proposed as a promising alternative to the conventional inspection processes enabling continuous health monitoring of the tank structures. Thereby, finite element analysis taking the respective ADR and RID tank design loads into account is proposed as a capable tool to be applied in early stages of development to reveal the hot spot areas, where acoustic emission sensors have to be More >

  • Open Access

    ARTICLE

    Evaluation of Stress Environment around Pits in Nickel Aluminum Bronze Metal under Corrosion and Cyclic Stresses

    Ramana M. Pidaparti1, Alex C. Johnson1

    Structural Durability & Health Monitoring, Vol.9, No.1, pp. 87-98, 2013, DOI:10.32604/sdhm.2013.009.087

    Abstract Surface damage in the form of pitting was observed in NiAl Bronze metal subjected to corrosion and cyclic stresses. In order to investigate the stresses surrounding the evolving pits due to corrosion, an image based computational study was carried out. The computational study involves developing an analysis model from the SEM images of corroded pits and then conducting stress analysis. Several computational simulations were carried out with increasing/evolving pits and the corresponding stress environment was obtained. The results obtained indicate that pit profiles (size and height) greatly affect the stress environment and the maximum stresses More >

  • Open Access

    ARTICLE

    An Integrated Model for Tension Stiffening and Reinforcement Corrosion of RC Flexural Members

    Smitha Gopinath1,2, J. Rajasankar1, Nagesh R.Iyer1, A.Rama Chandra Murthy1

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 87-110, 2013, DOI:10.3970/cmc.2013.033.087

    Abstract An integrated model is proposed to describe tension stiffening in reinforced concrete (RC) flexural members that are undergoing uniform corrosion of reinforcement. The tension stiffening model is taken as base to incorporate the effects of reinforcement corrosion. The model is developed in two steps. In the first step, tension stiffening of concrete is modelled using an exponential stress-strain curve defined as function of a decay parameter. Modular ratio and reinforcement ratio are considered in the definition of the decay parameter. In the second step, the effects of uniform corrosion of reinforcement are integrated with the… More >

  • Open Access

    ARTICLE

    Studies on Chloride Induced Corrosion of Reinforcement Steel in Cracked Concrete

    Sangoju Bhaskar1, Ravindra Gettu2, B.H. Bharatkumar1, M. Neelamegam1

    Structural Durability & Health Monitoring, Vol.7, No.4, pp. 231-252, 2011, DOI:10.3970/sdhm.2011.007.231

    Abstract The durability of reinforced concrete (RC) exposed to severe environments depends largely on its ability to resist the penetration of aggressive compounds. This paper deals with the corrosion of reinforcement bars (rebars) in cracked concrete exposed to chlorides. A simple U-shaped specimen was used in the study, with a high yield strength deformed bar of 12 mm diameter placed at with 20 mm clear cover. Concrete specimens with three water to cement ratios (w/c) and pre-cracks exposed to chlorides were studied for quality assessment and quantifying the corrosion damage in terms of gravimetric weight loss. More >

  • Open Access

    ARTICLE

    Experimental Study on Mechanical Properties Degradation of TP110TS Tube Steel in High H2S Corrosive Environment

    Deli Gao1, Zengxin Zhao2

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 157-166, 2011, DOI:10.3970/cmc.2011.026.157

    Abstract The research on casing corrosion in sour environment by a synergism of sweet corrosion and H2S corrosion has become the basis of casing selection and casing string safety evaluation with more and more sour reservoirs containing high H2S concentration being developed. It is essential to scientifically utilize casing service ability and reasonably control production rate of gas well to achieve the effective and safe developing of gas resources during the safety period of casing service with a precise casing life prediction. Scanning electron microscopy and tensile testing were applied to investigate the corrosion of TP110TS tube More >

  • Open Access

    ARTICLE

    Fracture Mechanics Based Model for Fatigue Remaining Life Prediction of RC beams Considering Corrosion Effects

    A Rama Chandra Murthy1, Smitha Gopinath1,2, Ashish Shrivastav1, G. S. Palani1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 1-18, 2011, DOI:10.3970/cmc.2011.025.001

    Abstract This paper presents methodologies for crack growth study and fatigue remaining life prediction of reinforced concrete structural components accounting for the corrosion effects. Stress intensity factor (SIF) has been computed by using the principle of superposition. At each incremental crack length, net SIF has been computed as the difference of SIF of plain concrete and reinforcement. The behaviour of reinforcement has been considered as elasto-plastic. Uniform corrosion rate has been assumed in the modeling. Corrosion effect has been accounted in the form of reduction in the diameter and modulus of elasticity of steel. Numerical studies More >

  • Open Access

    ARTICLE

    Nonlinear Finite Element Analysis of RC Structures Incorporating Corrosion Effects

    Smitha Gopinath1,2, A. Ramach,ra Murthy1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 55-72, 2011, DOI:10.3970/cmc.2011.022.055

    Abstract This paper presents the mathematical modeling techniques for nonlinear finite element analysis of RC structure to incorporate uniform corrosion effects. Effect of corrosion has been simulated as reduction in effective cross-sectional area of reinforcing bar, reduction in bonding phenomena and as reduction in material properties of reinforcing bar such as yield strength and elastic modulus. Appropriate constitutive laws for (i) corroded rebar elements and (ii) bond slip with corroded bar have been described. Procedure has been outlined to determine the global damage indicator by secant stiffness based approach. A corroded RC beam has been analysed More >

  • Open Access

    ARTICLE

    The Effective Material Properties of a Steel Plate Containing Corrosion Pits

    W. F. Yuan1,2, H. B. Zhang1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 117-126, 2010, DOI:10.3970/cmc.2010.016.117

    Abstract Corrosion pits on a steel plate can reduce the strength of the plate. However, it is difficult to calculate the corrosion effect analytically since the pits are normally distributed on the plate's surface randomly. In this manuscript, a simple approach is proposed to convert the corroded plate into a perfect one. By this method, the corrosion pits are treated as inclusions embedded in the plate. Then the analytical mechanics model used for composite material can be adopted in the calculation of the steel plate's effective material properties. To verify the proposed approach, numerical simulation is More >

Displaying 41-50 on page 5 of 58. Per Page