Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    PROCEEDINGS

    Simulation of Irradiation Properties and Damage Evolution of High Entropy Alloys

    Shuo Wang, Yang Chen, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.010700

    Abstract High entropy alloys (HEA) are considered as the candidate materials for the next generation of nuclear systems due to the excellent high temperature properties and radiation resistance. However, for the lack of atomic lattice distortion information from the micromechanical description, the existing simulation methods are difficult to capture the microstructure and damage evolution of the HEA at submicron scale. To address this, we develop the random field theory informed discrete dislocation dynamics simulations based on the results of high-resolution transmission electron microscopy to systematically clarify the role of heterogeneous lattice strain on the complex interactions… More >

  • Open Access

    PROCEEDINGS

    Evaluating the Degradation Behavior of Additive Manufacturing Zn Alloys for Biomedical Application

    Kaiyang Li1, Renjing Li1, Hui Wang2, Naiqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012643

    Abstract Zn is a promising biomedical implant for its good biocompatibility, moderate mechanical strength, and suitable degradation rate. As a novel fabricating method, Additive Manufacturing (AM) could prepare biomedical Zn by raw powder deposition, melting, and molten pool solidification in a layer-by-layer pattern, which favors the customized shape and well-controlled geometry of the final product. Meanwhile, the rapid heating and solidification from AM often induces unique structural changes compared with traditional fabrication techniques, thus subsequently affecting the degradation behavior. Still, setting up the correlations among AM fabrication, structural changes and degradation behavior of Zn remains a… More >

  • Open Access

    ARTICLE

    Evaluation of Tubing Integrity with Rectangular Corrosion under Thermo-Chemical-Mechanical Coupling

    Yi Huang1,*, Ming Luo1, Zhujun Li1, Donglei Jiang1, Ping Xiao1, Mingyuan Yao2, Jia He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1839-1860, 2025, DOI:10.32604/fdmp.2025.065459 - 12 September 2025

    Abstract This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects, with particular attention to the presence of rectangular corrosion defects. Drawing on the material’s stress–strain constitutive behavior, thermal expansion coefficient, thermal conductivity, and electrochemical test data, the research incorporates geometric nonlinearities arising from large deformations induced by corrosion. A detailed three-dimensional finite element (FE) model of the corroded P110S tubing is developed to simulate its response under complex loading conditions. The proposed model is rigorously validated through full-scale burst experiments and analytical calculations based on theoretical formulations.… More >

  • Open Access

    ARTICLE

    Research on a Simulation Platform for Typical Internal Corrosion Defects in Natural Gas Pipelines Based on Big Data Analysis

    Changchao Qi1, Lingdi Fu1, Ming Wen1, Hao Qian2, Shuai Zhao1,*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1073-1087, 2025, DOI:10.32604/sdhm.2025.061898 - 30 June 2025

    Abstract The accuracy and reliability of non-destructive testing (NDT) approaches in detecting interior corrosion problems are critical, yet research in this field is limited. This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects. The objective is to increase pipeline dependability and safety through more precise, real-time health evaluations. Compared to previous approaches, our solution provides higher accuracy in fault detection and quantification, making it ideal for pipeline integrity monitoring in real-world applications. To solve this issue, statistical… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Residual Strength for Corroded Pipelines

    Yaojin Fan, Huaqing Dong*, Zixuan Zong, Tingting Long, Qianglin Huang, Guoqiang Huang

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 731-769, 2025, DOI:10.32604/sdhm.2025.061056 - 03 April 2025

    Abstract This study presents a comprehensive investigation of residual strength in corroded pipelines within the Yichang-Qianjiang section of the Sichuan-East Gas Pipeline, integrating advanced numerical simulation with experimental validation. The research methodology incorporates three distinct parameter grouping approaches: a random group based on statistical analysis of 389 actual corrosion defects detected during 2023 MFL inspection, a deviation group representing historically documented failure scenarios, and a structural group examining systematic parameter variations. Using ABAQUS finite element software, we developed a dynamic implicit analysis model incorporating geometric nonlinearity and validated it through 1:12.7 scaled model testing, achieving prediction… More >

  • Open Access

    ARTICLE

    Effects of Repair Grouting and Jacketing on Corrosion Concrete Using Ultrasonic Method

    Rivky Afanda1, Ahmad Zaki1,2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 265-284, 2025, DOI:10.32604/sdhm.2024.053084 - 15 January 2025

    Abstract Concrete is one of the most important elements in building construction. However, concrete used in construction is susceptible to damage due to corrosion. The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure. The repair method is one approach to overcome this problem. This research aims to determine the effect of grouting and jacketing repairs on corroded concrete. The concrete used has dimensions of 15 cm × 15 cm × 60 cm with planned corrosion variations of 50%, 60%, and 70%. The test objects were tested using… More >

  • Open Access

    PROCEEDINGS

    An Investigation of Low/High Temperature Hot Corrosion Mechanism in a Ni-Base Superalloy Coated with Na2SO4+NaCl Salt Mixture

    Baishun Yang1, Biao Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011944

    Abstract Hot corrosion behavior of GH4169 nickel-based superalloy coated with 95wt.%Na2SO4+5wt.%NaCl salt mixture at 650 ℃,800 ℃, and 950 ℃ were investigated by some material characterization methods. The Experimental results showed that hot corrosion kinetics followed a parabolic, linear and exponential laws at 650 ℃, 800 ℃, and 950 ℃ respectively. Notably, as the temperature ascended from 650 ℃ to over 800 ℃, the corrosion mechanisms underwent a transition from pit corrosion to uniform erosion, corresponding to low-temperature hot corrosion (LTHC) and high-temperature hot corrosion (HTHC). At 650 ℃, a large number of semi-ellipsoidal corrosion pits manifested More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Industrial Corrosion Detection

    Mehwash Farooqui1, Atta Rahman2,*, Latifa Alsuliman1, Zainab Alsaif1, Fatimah Albaik1, Cadi Alshammari1, Razan Sharaf1, Sunday Olatunji1, Sara Waslallah Althubaiti1, Hina Gull3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2587-2605, 2024, DOI:10.32604/cmc.2024.055262 - 18 November 2024

    Abstract The proposed study focuses on the critical issue of corrosion, which leads to significant economic losses and safety risks worldwide. A key area of emphasis is the accuracy of corrosion detection methods. While recent studies have made progress, a common challenge is the low accuracy of existing detection models. These models often struggle to reliably identify corrosion tendencies, which are crucial for minimizing industrial risks and optimizing resource use. The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network (CNN), as well as two pretrained… More >

  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    PROCEEDINGS

    Microstructural Evolution, Mechanical Properties and Corrosion Behaviors of Additively Manufactured Biodegradable Zn-Cu Alloys

    Bo Liu1,2,*, Jia Xie2, Gonghua Chen2, Yugang Gong2, Hongliang Yao1, Tiegang Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012904

    Abstract Biodegradable metal implants that meet clinical applications require good mechanical properties and an appropriate biodegradation rate. Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an essential branch of orthopedic implants because of their moderate degradation and bone-mimicking mechanical properties. This paper investigated the microstructural evolution and corrosion mechanisms of zinc-copper (Zn-Cu) alloys prepared by the laser-powder-bed-fusion (L-PBF) additive manufacturing method. Alloying with Cu significantly increases the ultimate tensile strength (UTS) of unalloyed Zn, but the UTS and ductility of unalloyed Zn and Zn-2Cu decrease with increasing laser energy density. Unalloyed Zn has a dendritic microstructure,… More >

Displaying 1-10 on page 1 of 69. Per Page