Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ABSTRACT

    Modeling Intergranular Stress Corrosion Cracking A Voronoi-Markovian-Monte Carlo Approach

    M.A. Arafin, J.A. Szpunar

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.3, pp. 59-60, 2009, DOI:10.3970/icces.2009.013.059

    Abstract This paper introduce a novel approach for face image segmentation base on Voronoi Diagram (VD) technique. We used intensity value and region pixels value for enhance preprocessing step on gray-scale image. The method for locating and extraction face/head boundary are applied feature point of the original image which are useful dual tessellation of the VD is know as Delaunay Triangulation (DT). A target of experiment is reported face image segmentation that uses still face image from BioID database. The result of this method clearly demonstrates the segmentation which performs in comparison with another method in More >

  • Open Access

    ARTICLE

    Modeling of the Inhibition-Mechanism Triggered by `Smartly' Sensed Interfacial Stress Corrosion and Cracking

    Sudib K. Mishra1, J. K. Paik2, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 67-96, 2009, DOI:10.3970/cmes.2009.050.067

    Abstract We present a simulation based study, by combining several models involving multiple time scales and physical processes, which govern the interfacial stress corrosion cracking (SCC) in grain boundaries, layered composites or bi-materials, and the mechanisms of inhibition using `smart' agents. The inhibiting agents described herein, automatically sense the initiation of damage, migrate to the sites and delay the corrosion kinetics involved in the process. The phenomenon of SCC is simulated using the lattice spring model (for the mechanical stresses), coupled with a finite difference model of diffusing species, causing the dissolution of the interfacial bonds.… More >

  • Open Access

    ABSTRACT

    Construction of Measurement System for Stable Infrared Thermographical Image

    Young-Sook Roh1, Lan Chung2, Seung-Ho Cho2, Se-Hyun Yoon2, Jung-Tae Noh

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.4, pp. 157-164, 2008, DOI:10.3970/icces.2008.008.157

    Abstract The purpose of this research is to develop a new technique to measure the corrosion level of reinforcing rebar which embedded in reinforced concrete structures using infrared(IR) thermographical image. IR thermography has been used various applications for non-destructive test(NDT) area, however, IR thermographical data depend on many parameters that the assessment of reliability and stability becomes very important issue to utilize IR thermographical system. This study presents a technique to quantitatively measure the corrosion level of a reinforcing bar using proposed infrared thermography measurement system. We found out electric heating method has an important effect More >

  • Open Access

    ARTICLE

    Neural Network Mapping of Corrosion Induced Chemical Elements Degradation in Aircraft Aluminum

    Ramana M. Pidaparti1,2, Evan J. Neblett2

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 1-10, 2007, DOI:10.3970/cmc.2007.005.001

    Abstract A neural network (NN) model is developed for the analysis and prediction of the mapping between degradation of chemical elements and electrochemical parameters during the corrosion process. The input parameters to the neural network model are alloy composition, electrochemical parameters, and corrosion time. The output parameters are the degradation of chemical elements in AA 2024-T3 material. The NN is trained with the data obtained from Energy Dispersive X-ray Spectrometry (EDS) on corroded specimens. A very good performance of the neural network is achieved after training and validation with the experimental data. After validating the NN More >

  • Open Access

    ARTICLE

    Cold Drawn Eutectoid Pearlitic Steel Wires as High Performance Materials in Structural Engineering

    J. Toribio 1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 239-248, 2006, DOI:10.3970/sdhm.2006.002.239

    Abstract This paper reviews the fracture performance in air and aggressive environment (stress corrosion cracking) of eutectoid prestressing steel wires with different levels of cold drawing. In air environment, a micromechanical model of fracture is proposed to rationalize the results on the basis of the microstructure of the steels after drawing and the model of Miller & Smith of fracture of pearlitic microstructure by shear cracking of the cementite lamellae. In hydrogen assisted cracking (HAC), a microstructure-based model is proposed on the basis of the Miller & Smith model and the mechanism of hydrogen enhanced decohesion or, more More >

  • Open Access

    ARTICLE

    Aircraft Structural Integrity Assessment through Computational Intelligence Techniques

    RamanaM. Pidaparti1

    Structural Durability & Health Monitoring, Vol.2, No.3, pp. 131-148, 2006, DOI:10.3970/sdhm.2006.002.131

    Abstract This paper provides an overview of the computational intelligence methods developed for the structural integrity assessment of aging aircraft structures. Computational intelligence techniques reviewed include artificial neural networks, inverse neural network mapping, wavelet based image processing methods, genetic algorithms, spectral element methods, and particle swarm optimization. Multi-site damage, corrosion, and corrosion-fatigue damage in aging aircraft is specifically discussed. Results obtained from selected computational intelligence methods are presented and compared to the existing alternate solutions and experimental data. The results presented illustrate the applicability of computational intelligence methods for assessing the structural integrity of aging aircraft More >

  • Open Access

    ARTICLE

    Two-dimensional Corrosion Pit Initiation and Growth Simulation Model

    Ramana M. Pidaparti1, Anuj Puri2, Mathew J. Palakal2, Ajay Kashyap3

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 65-76, 2005, DOI:10.3970/cmc.2005.002.065

    Abstract A two-dimensional corrosion initiation and growth model for aircraft aluminum materials is developed. The model takes into account the electro-chemical parameters as well as specific rules governing corrosion mechanisms. The simulation program is implemented in a cellular automata framework. The corrosion initiation and growth patterns obtained from simulations are compared qualitatively and quantitatively to the experimental data obtained from the Center for Materials Diagnostics at the University of Dayton Research Institute, Dayton. The results indicate that the present model effectively captures the corrosion damage process including initiation and growth. The effects of various electro-chemical parameters More >

  • Open Access

    ARTICLE

    Fast Multipole Boundary Element Analysis of Corrosion Problems

    S.Aoki1, K.Amaya2, M.Urago3, A.Nakayama4

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.2, pp. 123-132, 2004, DOI:10.3970/cmes.2004.006.123

    Abstract The Fast Multipole Boundary Element Method(FMBEM) which is suitable for a large scale computation is applied to corrosion analysis. Many techniques of the FMBEM on the potential problems can be usefully employed. Additionally, some procedures are developed for corrosion analysis. To cope with the non-linearity due to the polarization curve, the Bi-CGSTAB iterative method which is commonly used in the FMBEM is modified. To solve infinite domain problems, the M00 which is obtained naturally in the multipole expansion is conveniently used. A pipe element for the FMBEM is developed. A couple of example problems are More >

Displaying 51-60 on page 6 of 58. Per Page