Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (382)
  • Open Access

    ARTICLE

    Coupled Crack /Contact Analysis for Composite Material Containing Periodic Cracks under Periodic Rigid Punches Action

    Yue-Ting Zhou1, Xing Li2, De-Hao Yu3, Kang Yong Lee1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.2, pp. 163-190, 2010, DOI:10.3970/cmes.2010.063.163

    Abstract In this paper, a coupled crack/contact model is established for the composite material with arbitrary periodic cracks indented by periodic punches. The contact of crack faces is considered. Frictional forces are modeled to arise between the punch foundation and the composite material boundary. Kolosov-Muskhelisvili complex potentials with Hilbert kernels are constructed, which satisfy the continuity conditions of stress and displacement along the interface identically. The considered problem is reduced to a system of singular integral equations of first and second kind with Hilbert kernels. Bounded functions are defined so that singular integral equations of Hilbert type can be transformed to… More >

  • Open Access

    ARTICLE

    RKPM with Augmented Corrected Collocation Method for Treatment of Material Discontinuities

    H.M. Shodja1,2,3, M. Khezri4, A. Hashemian1, A. Behzadan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.2, pp. 171-204, 2010, DOI:10.3970/cmes.2010.062.171

    Abstract An accurate numerical methodology for capturing the field quantities across the interfaces between material discontinuities, in the context of reproducing kernel particle method (RKPM), is of particular interest. For this purpose the innovative numerical technique, so-called augmented corrected collocation method is introduced; this technique is an extension of the corrected collocation method used for imposing essential boundary conditions (EBCs). The robustness of this methodology is shown by utilizing it to solve two benchmark problems of material discontinuities, namely the problem of circular inhomogeneity with uniform radial eigenstrain, and the problem of interaction between a crack and a circular inhomogeneity. Moreover,… More >

  • Open Access

    ARTICLE

    A Moving IRBFN-based Integration-Free Meshless Method

    Phong B.H. Le1, Timon Rabczuk2, Nam Mai-Duy1, Thanh Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.1, pp. 63-110, 2010, DOI:10.3970/cmes.2010.061.063

    Abstract A novel approximation method using integrated radial basis function networks (IRBFN) coupled with moving least square (MLS) approximants, namely moving integrated radial basis function networks (MIRBFN), is proposed in this work. In this method, the computational domain Ω is divided into finite sub-domains ΩI which satisfy point-wise overlap condition. The local function interpolation is constructed by using IRBFN supported by all nodes in subdomain ΩI. The global function is then constructed by using Partition of Unity Method (PUM), where MLS functions play the role of partition of unity. As a result, the proposed method is locally supported and yields sparse… More >

  • Open Access

    ARTICLE

    Analysis of a Crack in a Thin Adhesive Layer between Orthotropic Materials: An Application to Composite Interlaminar Fracture Toughness Test

    L. Távara1, V. Manticˇ 1, E. Graciani1, J. Cañas1, F. París1

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 247-270, 2010, DOI:10.3970/cmes.2010.058.247

    Abstract The problem of a crack in a thin adhesive layer is considered. The adherents may have orthotropic elastic behavior which allows composite laminates to be modeled. In the present work a linear elastic-brittle constitutive law of the thin adhesive layer, called weak interface model, is adopted, allowing an easy modeling of crack propagation along it. In this law, the normal and tangential stresses across the undamaged interface are proportional to the relative normal and tangential displacements, respectively. Interface crack propagation is modeled by successive breaking of the springs used to discretize the weak interface. An important feature of the BEM… More >

  • Open Access

    ARTICLE

    3D Higher-OrderX-FEM Model for the Simulation of Cohesive Cracks in Cementitious Materials Considering Hygro-Mechanical Couplings

    C. Becker1, S. Jox2, G. Meschke3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 245-278, 2010, DOI:10.3970/cmes.2010.057.245

    Abstract A three-dimensional numerical model based on the Extended Finite Element Method (X-FEM) is presented for the simulation of cohesive cracks in cementitious materials, such as concrete, in a hygro-mechanical framework. Enhancement functions for the small scale resolution of the displacement jump across cracks in the context of the X-FEM is used in conjunction with a higher order family of hierarchical shape functions for the representation of the large scale displacement field of the investigated structure. Besides the theoretical and computational formulation in a multiphase context, aspects of the implementation, such as integration and crack tracking algorithms, are discussed. Representative numerical… More >

  • Open Access

    ARTICLE

    Directional Cohesive Elements for the Simulation of Blade Cutting of Thin Shells

    A. Frangi1, M. Pagani1, U. Perego1, R. Borsari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 205-224, 2010, DOI:10.3970/cmes.2010.057.205

    Abstract This paper is concerned with the finite element simulation of a thin membrane cutting by a sharp blade. Smeared crack finite element approaches appear to be unsuitable for this purpose, since very small elements would be required to conform to the sharp edge of the cutter. Furthermore, when the membrane material is very ductile, classical interface cohesive elements, where the cohesive forces are transmitted in the direction of the crack opening displacement, cannot correctly reproduce situations where the blade crosses the process zone. A simplified approach, based on the new concept of "directional" cohesive elements, is here proposed for a… More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Mode I Crack Problem for Functionally Graded Layered Structures

    Sheng-Hu Ding1,2, Xing Li2, Yue-Ting Zhou2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 43-84, 2010, DOI:10.3970/cmes.2010.056.043

    Abstract In this paper, the crack-tip fields in bonded functionally graded finite strips are studied. Different layers may have different nonhomogeneity properties in the structure. A bi-parameter exponential function was introduced to simulate the continuous variation of material properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. Various internal cracks and edge crack and crack crossing the interface configurations are investigated, respectively. The asymptotic stress field near the tip of a crack crossing the interface is examined and it is shown that, unlike the corresponding stress field… More >

  • Open Access

    ARTICLE

    A Relocalization Technique for the Multiscale Computation of Delamination in Composite Structures

    O. Allix1, P. Kerfriden1, P. Gosselet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.3, pp. 271-292, 2010, DOI:10.3970/cmes.2010.055.271

    Abstract We present numerical enhancements of a multiscale domain decomposition strategy based on a LaTIn solver and dedicated to the computation of the debounding in laminated composites. We show that the classical scale separation is irrelevant in the process zones, which results in a drop in the convergence rate of the strategy. We show that performing nonlinear subresolutions in the vicinity of the front of the crack at each prediction stage of the iterative solver permits to restore the effectiveness of the method. More >

  • Open Access

    ARTICLE

    Cell Method Analysis of Crack Propagation in Tensioned Concrete Plates

    E. Ferretti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.054.253

    Abstract In this study, the problem of finding the complete trajectory of propagation and the limiting load in plates with internal straight cracks is extended to the non-linear field. In particular, results concerning concrete plates in bi-axial tensile loading are shown. The concrete constitutive law adopted for this purpose is monotonic non-decreasing, as following according to previous studies of the author on monotonic mono-axial loading. The analysis is performed in a discrete form, by means of the Cell Method (CM). The aim of this study is both to test the new concrete constitutive law in biaxial tensile load and to verify… More >

  • Open Access

    ARTICLE

    Interface Crack Problems in Anisotropic Solids Analyzed by the MLPG

    J. Sladek1, V. Sladek1, M. Wünsche2, Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.2, pp. 223-252, 2009, DOI:10.3970/cmes.2009.054.223

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed, to solve the interface crack problem between two dissimilar anisotropic elastic solids. Both stationary and transient mechanical and thermal loads are considered for two-dimensional (2-D) problems in this paper. A Heaviside step function as the test functions is applied in the weak-form to derive local integral equations. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variations of the displacements and temperature are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains… More >

Displaying 301-310 on page 31 of 382. Per Page