Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique

    Yih Bing Chu*, Zhi Min Lim, Bryan Keane, Ping Hao Kong, Ahmed Rafat Elkilany, Osama Hisham Abusetta

    Journal of Cyber Security, Vol.5, pp. 33-46, 2023, DOI:10.32604/jcs.2023.045422

    Abstract The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud, particularly in credit card transactions. Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising from potentially fraudulent activities. However, a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations. While sampling techniques can significantly reduce computational time, the resulting dataset relies on generated data and the accuracy of the pre-processing machine learning models employed. Such… More >

  • Open Access

    ARTICLE

    A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network

    Yalong Xie1, Aiping Li1,*, Biyin Hu2, Liqun Gao1, Hongkui Tu1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2707-2726, 2023, DOI:10.32604/cmc.2023.037039

    Abstract Credit Card Fraud Detection (CCFD) is an essential technology for banking institutions to control fraud risks and safeguard their reputation. Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD, which significantly impact classification models’ performance. To address these issues, this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks (MFGAN). The MFGAN model consists of two modules: a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space, and a balance module… More >

  • Open Access

    ARTICLE

    A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost

    Wang Ning1,*, Siliang Chen2,*, Fu Qiang2, Haitao Tang2, Shen Jie2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5951-5965, 2023, DOI:10.32604/cmc.2023.035558

    Abstract With the popularity of online payment, how to perform credit card fraud detection more accurately has also become a hot issue. And with the emergence of the adaptive boosting algorithm (Adaboost), credit card fraud detection has started to use this method in large numbers, but the traditional Adaboost is prone to overfitting in the presence of noisy samples. Therefore, in order to alleviate this phenomenon, this paper proposes a new idea: using the number of consecutive sample misclassifications to determine the noisy samples, while constructing a penalty factor to reconstruct the sample weight assignment. Firstly, the theoretical analysis shows that… More >

  • Open Access

    ARTICLE

    A Novel Cardholder Behavior Model for Detecting Credit Card Fraud

    Yiğit Kültür, Mehmet Ufuk Çağlayan

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 807-817, 2018, DOI:10.1080/10798587.2017.1342415

    Abstract Because credit card fraud costs the banking sector billions of dollars every year, decreasing the losses incurred from credit card fraud is an important driver for the sector and end-users. In this paper, we focus on analyzing cardholder spending behavior and propose a novel cardholder behavior model for detecting credit card fraud. The model is called the Cardholder Behavior Model (CBM). Two focus points are proposed and evaluated for CBMs. The first focus point is building the behavior model using single-card transactions versus multi-card transactions. As the second focus point, we introduce holiday seasons as spending periods that are different… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Based on Machine Learning

    Yong Fang1, Yunyun Zhang2, Cheng Huang1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 185-195, 2019, DOI:10.32604/cmc.2019.06144

    Abstract In recent years, the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit. Credit card transactions take a salient role in nowadays’ online transactions for its obvious advantages including discounts and earning credit card points. So credit card fraudulence has become a target of concern. In order to deal with the situation, credit card fraud detection based on machine learning is been studied recently. Yet, it is difficult to detect fraudulent transactions due to data imbalance (normal and fraudulent transactions), for which Smote algorithm is proposed in order to resolve data imbalance. The assessment of… More >

Displaying 1-10 on page 1 of 5. Per Page