Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Detection of DDoS Attacks in VANETs for Emergency Vehicle Communication

    Bappa Muktar*, Vincent Fono, Adama Nouboukpo

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4705-4727, 2025, DOI:10.32604/cmc.2025.067733 - 23 October 2025

    Abstract Vehicular Ad Hoc Networks (VANETs) are central to Intelligent Transportation Systems (ITS), especially for real-time communication involving emergency vehicles. Yet, Distributed Denial of Service (DDoS) attacks can disrupt safety-critical channels and undermine reliability. This paper presents a robust, scalable framework for detecting DDoS attacks in highway VANETs. We construct a new dataset with Network Simulator 3 (NS-3) and Simulation of Urban Mobility (SUMO), enriched with real mobility traces from Germany’s A81 highway (OpenStreetMap). Three traffic classes are modeled: DDoS, Voice over IP (VoIP), and Transmission Control Protocol Based (TCP-based) video streaming (VideoTCP). The pipeline includes normalization,… More >

  • Open Access

    ARTICLE

    SDN-Enabled IoT Based Transport Layer DDoS Attacks Detection Using RNNs

    Mohammad Nowsin Amin Sheikh1,2,*, Muhammad Saibtain Raza1, I-Shyan Hwang1,*, Md. Alamgir Hossain3, Ihsan Ullah1, Tahmid Hasan4, Mohammad Syuhaimi Ab-Rahman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4043-4066, 2025, DOI:10.32604/cmc.2025.065850 - 23 September 2025

    Abstract The rapid advancement of the Internet of Things (IoT) has heightened the importance of security, with a notable increase in Distributed Denial-of-Service (DDoS) attacks targeting IoT devices. Network security specialists face the challenge of producing systems to identify and offset these attacks. This research manages IoT security through the emerging Software-Defined Networking (SDN) standard by developing a unified framework (RNN-RYU). We thoroughly assess multiple deep learning frameworks, including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Feed-Forward Convolutional Neural Network (FFCNN), and Recurrent Neural Network (RNN), and present the novel usage of Synthetic Minority Over-Sampling More >

  • Open Access

    ARTICLE

    Evaluation and Benchmarking of Cybersecurity DDoS Attacks Detection Models through the Integration of FWZIC and MABAC Methods

    Alaa Mahmood, İsa Avcı*

    Computer Systems Science and Engineering, Vol.49, pp. 401-417, 2025, DOI:10.32604/csse.2025.062413 - 25 April 2025

    Abstract A Distributed Denial-of-Service (DDoS) attack poses a significant challenge in the digital age, disrupting online services with operational and financial consequences. Detecting such attacks requires innovative and effective solutions. The primary challenge lies in selecting the best among several DDoS detection models. This study presents a framework that combines several DDoS detection models and Multiple-Criteria Decision-Making (MCDM) techniques to compare and select the most effective models. The framework integrates a decision matrix from training several models on the CiC-DDOS2019 dataset with Fuzzy Weighted Zero Inconsistency Criterion (FWZIC) and Multi-Attribute Boundary Approximation Area Comparison (MABAC) methodologies.… More >

  • Open Access

    ARTICLE

    Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking

    Hira Akhtar Butt1, Khoula Said Al Harthy2, Mumtaz Ali Shah3, Mudassar Hussain2,*, Rashid Amin4,*, Mujeeb Ur Rehman1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3003-3031, 2024, DOI:10.32604/cmc.2024.057185 - 18 November 2024

    Abstract Detecting sophisticated cyberattacks, mainly Distributed Denial of Service (DDoS) attacks, with unexpected patterns remains challenging in modern networks. Traditional detection systems often struggle to mitigate such attacks in conventional and software-defined networking (SDN) environments. While Machine Learning (ML) models can distinguish between benign and malicious traffic, their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent retraining. In this paper, we propose a novel DDoS detection framework that combines Machine Learning (ML) and Ensemble Learning (EL) techniques to improve DDoS attack detection and mitigation in SDN environments. Our model… More >

  • Open Access

    ARTICLE

    Distributed Federated Split Learning Based Intrusion Detection System

    Rasha Almarshdi1,2,*, Etimad Fadel1, Nahed Alowidi1, Laila Nassef1

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 949-983, 2024, DOI:10.32604/iasc.2024.056792 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is one of the critical emerging applications of the Internet of Things (IoT). The huge increases in data generation and transmission across distributed networks make security one of the most important challenges facing IoMT networks. Distributed Denial of Service (DDoS) attacks impact the availability of services of legitimate users. Intrusion Detection Systems (IDSs) that are based on Centralized Learning (CL) suffer from high training time and communication overhead. IDS that are based on distributed learning, such as Federated Learning (FL) or Split Learning (SL), are recently used for intrusion… More >

  • Open Access

    ARTICLE

    Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning

    Ahmad Alzu’bi1,*, Amjad Albashayreh2, Abdelrahman Abuarqoub3, Mai A. M. Alfawair4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3785-3802, 2024, DOI:10.32604/cmc.2024.052599 - 12 September 2024

    Abstract In the era of the Internet of Things (IoT), the proliferation of connected devices has raised security concerns, increasing the risk of intrusions into diverse systems. Despite the convenience and efficiency offered by IoT technology, the growing number of IoT devices escalates the likelihood of attacks, emphasizing the need for robust security tools to automatically detect and explain threats. This paper introduces a deep learning methodology for detecting and classifying distributed denial of service (DDoS) attacks, addressing a significant security concern within IoT environments. An effective procedure of deep transfer learning is applied to utilize More >

  • Open Access

    ARTICLE

    Cybernet Model: A New Deep Learning Model for Cyber DDoS Attacks Detection and Recognition

    Azar Abid Salih1,*, Maiwan Bahjat Abdulrazaq2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1275-1295, 2024, DOI:10.32604/cmc.2023.046101 - 30 January 2024

    Abstract Cyberspace is extremely dynamic, with new attacks arising daily. Protecting cybersecurity controls is vital for network security. Deep Learning (DL) models find widespread use across various fields, with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts. The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns. This study presents novel lightweight DL models, known as Cybernet models, for the detection and recognition of various cyber Distributed Denial of Service (DDoS) attacks. These models were constructed… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network

    Gul Nawaz1, Muhammad Junaid1, Adnan Akhunzada2, Abdullah Gani2,*, Shamyla Nawazish3, Asim Yaqub3, Adeel Ahmed1, Huma Ajab4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2157-2178, 2023, DOI:10.32604/cmc.2023.026952 - 29 November 2023

    Abstract Distributed denial of service (DDoS) attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user. We proposed a deep neural network (DNN) model for the detection of DDoS attacks in the Software-Defined Networking (SDN) paradigm. SDN centralizes the control plane and separates it from the data plane. It simplifies a network and eliminates vendor specification of a device. Because of this open nature and centralized control, SDN can easily become a victim of DDoS attacks. We proposed a supervised Developed Deep Neural Network (DDNN) model that can… More >

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667 - 31 October 2023

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can… More >

Displaying 1-10 on page 1 of 18. Per Page