Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach

    Turki Ali Alghamdi, Saud S. Alotaibi*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4047-4064, 2024, DOI:10.32604/cmc.2024.052796 - 12 September 2024

    Abstract Internet of Things (IoTs) provides better solutions in various fields, namely healthcare, smart transportation, home, etc. Recognizing Denial of Service (DoS) outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems. Deep learning (DL) models outperform in detecting complex, non-linear relationships, allowing them to effectually severe slight deviations from normal IoT activities that may designate a DoS outbreak. The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection, permitting proactive reduction events to be executed, hence securing the IoT network’s safety and functionality. Subsequently, this… More >

  • Open Access

    ARTICLE

    Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning

    Ahmad Alzu’bi1,*, Amjad Albashayreh2, Abdelrahman Abuarqoub3, Mai A. M. Alfawair4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3785-3802, 2024, DOI:10.32604/cmc.2024.052599 - 12 September 2024

    Abstract In the era of the Internet of Things (IoT), the proliferation of connected devices has raised security concerns, increasing the risk of intrusions into diverse systems. Despite the convenience and efficiency offered by IoT technology, the growing number of IoT devices escalates the likelihood of attacks, emphasizing the need for robust security tools to automatically detect and explain threats. This paper introduces a deep learning methodology for detecting and classifying distributed denial of service (DDoS) attacks, addressing a significant security concern within IoT environments. An effective procedure of deep transfer learning is applied to utilize More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387 - 27 February 2024

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have… More >

  • Open Access

    ARTICLE

    Cybernet Model: A New Deep Learning Model for Cyber DDoS Attacks Detection and Recognition

    Azar Abid Salih1,*, Maiwan Bahjat Abdulrazaq2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1275-1295, 2024, DOI:10.32604/cmc.2023.046101 - 30 January 2024

    Abstract Cyberspace is extremely dynamic, with new attacks arising daily. Protecting cybersecurity controls is vital for network security. Deep Learning (DL) models find widespread use across various fields, with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts. The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns. This study presents novel lightweight DL models, known as Cybernet models, for the detection and recognition of various cyber Distributed Denial of Service (DDoS) attacks. These models were constructed… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network

    Gul Nawaz1, Muhammad Junaid1, Adnan Akhunzada2, Abdullah Gani2,*, Shamyla Nawazish3, Asim Yaqub3, Adeel Ahmed1, Huma Ajab4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2157-2178, 2023, DOI:10.32604/cmc.2023.026952 - 29 November 2023

    Abstract Distributed denial of service (DDoS) attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user. We proposed a deep neural network (DNN) model for the detection of DDoS attacks in the Software-Defined Networking (SDN) paradigm. SDN centralizes the control plane and separates it from the data plane. It simplifies a network and eliminates vendor specification of a device. Because of this open nature and centralized control, SDN can easily become a victim of DDoS attacks. We proposed a supervised Developed Deep Neural Network (DDNN) model that can… More >

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667 - 31 October 2023

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can… More >

  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257 - 08 October 2023

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995 - 11 September 2023

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and… More >

  • Open Access

    ARTICLE

    A Modified PointNet-Based DDoS Attack Classification and Segmentation in Blockchain

    Jieren Cheng1,3, Xiulai Li1,2,3,4,*, Xinbing Xu2,3, Xiangyan Tang1,3, Victor S. Sheng5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 975-992, 2023, DOI:10.32604/csse.2023.039280 - 26 May 2023

    Abstract With the rapid development of blockchain technology, the number of distributed applications continues to increase, so ensuring the security of the network has become particularly important. However, due to its decentralized, decentralized nature, blockchain networks are vulnerable to distributed denial-of-service (DDoS) attacks, which can lead to service stops, causing serious economic losses and social impacts. The research questions in this paper mainly include two aspects: first, the classification of DDoS, which refers to detecting whether blockchain nodes are suffering DDoS attacks, that is, detecting the data of nodes in parallel; The second is the problem… More >

  • Open Access

    ARTICLE

    Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm

    Adnan Hasan Bdair Aighuraibawi1,2, Selvakumar Manickam1,*, Rosni Abdullah3, Zaid Abdi Alkareem Alyasseri4,5, Ayman Khallel6, Dilovan Asaad Zebari9, Hussam Mohammed Jasim7, Mazin Mohammed Abed8, Zainb Hussein Arif7

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 553-574, 2023, DOI:10.32604/csse.2023.037948 - 26 May 2023

    Abstract Internet Protocol version 6 (IPv6) is the latest version of IP that goal to host 3.4 × 1038 unique IP addresses of devices in the network. IPv6 has introduced new features like Neighbour Discovery Protocol (NDP) and Address Auto-configuration Scheme. IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol (ICMPv6). IPv6 is vulnerable to numerous attacks like Denial of Service (DoS) and Distributed Denial of Service (DDoS) which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications. Therefore, an Intrusion Detection System (IDS)… More >

Displaying 1-10 on page 1 of 37. Per Page