Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Method to Appraise Dangerous Class of Building Masonry Component Based on DC-YOLO Model

    Hongrui Zhang1, Wenxue Wei1, *, Xinguang Xiao1, Song Yang1, Wanlu Shao1

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 457-468, 2020, DOI:10.32604/cmc.2020.06988

    Abstract This DC-YOLO Model was designed in order to improve the efficiency for appraising dangerous class of buildings and avoid manual intervention, thereby making the appraisal results more objective. It is an automated method designed based on deep learning and target detection algorithms to appraise the dangerous class of building masonry component. Specifically, it (1) adopted K-means clustering to obtain the quantity and size of the prior boxes; (2) expanded the grid size to improve identification to small targets; (3) introduced in deformable convolution to adapt to the irregular shape of the masonry component cracks. The More >

Displaying 1-10 on page 1 of 1. Per Page