Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,294)
  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072494 - 09 December 2025

    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    PIDINet-MC: Real-Time Multi-Class Edge Detection with PiDiNet

    Mingming Huang1, Yunfan Ye1,*, Zhiping Cai2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072399 - 09 December 2025

    Abstract As a fundamental component in computer vision, edges can be categorized into four types based on discontinuities in reflectance, illumination, surface normal, or depth. While deep CNNs have significantly advanced generic edge detection, real-time multi-class semantic edge detection under resource constraints remains challenging. To address this, we propose a lightweight framework based on PiDiNet that enables fine-grained semantic edge detection. Our model simultaneously predicts background and four edge categories from full-resolution inputs, balancing accuracy and efficiency. Key contributions include: a multi-channel output structure expanding binary edge prediction to five classes, supported by a deep supervision More >

  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    Enhancing Ransomware Resilience in Cloud-Based HR Systems through Moving Target Defense

    Jay Barach*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071705 - 09 December 2025

    Abstract Human Resource (HR) operations increasingly rely on cloud-based platforms that provide hiring, payroll, employee management, and compliance services. These systems, typically built on multi-tenant microservice architectures, offer scalability and efficiency but also expand the attack surface for adversaries. Ransomware has emerged as a leading threat in this domain, capable of halting workflows and exposing sensitive employee records. Traditional defenses such as static hardening and signature-based detection often fail to address the dynamic requirements of HR Software as a Service (SaaS), where continuous availability and privacy compliance are critical. This paper presents a Moving Target Defense… More >

  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    FD-YOLO: An Attention-Augmented Lightweight Network for Real-Time Industrial Fabric Defect Detection

    Shaobo Kang, Mingzhi Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071488 - 09 December 2025

    Abstract Fabric defect detection plays a vital role in ensuring textile quality. However, traditional manual inspection methods are often inefficient and inaccurate. To overcome these limitations, we propose FD-YOLO, an enhanced lightweight detection model based on the YOLOv11n framework. The proposed model introduces the Bi-level Routing Attention (BRAttention) mechanism to enhance defect feature extraction, enabling more detailed feature representation. It proposes Deep Progressive Cross-Scale Fusion Neck (DPCSFNeck) to better capture small-scale defects and incorporates a Multi-Scale Dilated Residual (MSDR) module to strengthen multi-scale feature representation. Furthermore, a Shared Detail-Enhanced Lightweight Head (SDELHead) is employed to reduce More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071012 - 09 December 2025

    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

Displaying 1-10 on page 1 of 2294. Per Page