Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification

    Mohammad Yamin1,*, Sarah Basahel1, Saleh Bajaba2, Mona Abusurrah3, E. Laxmi Lydia4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1901-1916, 2023, DOI:10.32604/csse.2023.036455

    Abstract Recently, there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy (DR). DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged people in the developed world. Initial detection of DR becomes necessary for decreasing the disease severity by making use of retinal fundus images. This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic Retinopathy (DLLSHDM-DR) on Retinal Fundus Images. The proposed DLLSHDM-DR technique intends to assist physicians with the DR decision-making method. In the DLLSHDM-DR… More >

  • Open Access

    ARTICLE

    Gaussian Blur Masked ResNet2.0 Architecture for Diabetic Retinopathy Detection

    Swagata Boruah1, Archit Dehloo1, Prajul Gupta2, Manas Ranjan Prusty3,*, A. Balasundaram3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 927-942, 2023, DOI:10.32604/cmc.2023.035143

    Abstract Diabetic Retinopathy (DR) is a serious hazard that can result in irreversible blindness if not addressed in a timely manner. Hence, numerous techniques have been proposed for the accurate and timely detection of this disease. Out of these, Deep Learning (DL) and Computer Vision (CV) methods for multiclass categorization of color fundus images diagnosed with Diabetic Retinopathy have sparked considerable attention. In this paper, we attempt to develop an extended ResNet152V2 architecture-based Deep Learning model, named ResNet2.0 to aid the timely detection of DR. The APTOS-2019 dataset was used to train the model. This consists… More >

  • Open Access

    ARTICLE

    Blood Vessel Segmentation with Classification Model for Diabetic Retinopathy Screening

    Abdullah O. Alamoudi1,*, Sarah Mohammed Allabun2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2265-2281, 2023, DOI:10.32604/cmc.2023.032429

    Abstract Biomedical image processing is finding useful in healthcare sector for the investigation, enhancement, and display of images gathered by distinct imaging technologies. Diabetic retinopathy (DR) is an illness caused by diabetes complications and leads to irreversible injury to the retina blood vessels. Retinal vessel segmentation techniques are a basic element of automated retinal disease screening system. In this view, this study presents a novel blood vessel segmentation with deep learning based classification (BVS-DLC) model for DR diagnosis using retinal fundus images. The proposed BVS-DLC model involves different stages of operations such as preprocessing, segmentation, feature… More >

  • Open Access

    ARTICLE

    LuNet-LightGBM: An Effective Hybrid Approach for Lesion Segmentation and DR Grading

    Sesikala Bapatla1, J. Harikiran2,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 597-617, 2023, DOI:10.32604/csse.2023.034998

    Abstract Diabetes problems can lead to an eye disease called Diabetic Retinopathy (DR), which permanently damages the blood vessels in the retina. If not treated early, DR becomes a significant reason for blindness. To identify the DR and determine the stages, medical tests are very labor-intensive, expensive, and time-consuming. To address the issue, a hybrid deep and machine learning technique-based autonomous diagnostic system is provided in this paper. Our proposal is based on lesion segmentation of the fundus images based on the LuNet network. Then a Refined Attention Pyramid Network (RAPNet) is used for extracting global… More >

  • Open Access

    ARTICLE

    A Novel Soft Clustering Method for Detection of Exudates

    Kittipol Wisaeng*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1039-1058, 2023, DOI:10.32604/csse.2023.034901

    Abstract One of the earliest indications of diabetes consequence is Diabetic Retinopathy (DR), the main contributor to blindness worldwide. Recent studies have proposed that Exudates (EXs) are the hallmark of DR severity. The present study aims to accurately and automatically detect EXs that are difficult to detect in retinal images in the early stages. An improved Fusion of Histogram–Based Fuzzy C–Means Clustering (FHBFCM) by a New Weight Assignment Scheme (NWAS) and a set of four selected features from stages of pre-processing to evolve the detection method is proposed. The features of DR train the optimal parameter… More >

  • Open Access

    ARTICLE

    Machine Learning Based Diagnosis for Diabetic Retinopathy for SKPD-PSC

    M. P. Thiruvenkatasuresh1,*, Surbhi Bhatia2, Shakila Basheer3, Pankaj Dadheech4

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1767-1782, 2023, DOI:10.32604/iasc.2023.033711

    Abstract The study aimed to apply to Machine Learning (ML) researchers working in image processing and biomedical analysis who play an extensive role in comprehending and performing on complex medical data, eventually improving patient care. Developing a novel ML algorithm specific to Diabetic Retinopathy (DR) is a challenge and need of the hour. Biomedical images include several challenges, including relevant feature selection, class variations, and robust classification. Although the current research in DR has yielded favourable results, several research issues need to be explored. There is a requirement to look at novel pre-processing methods to discard… More >

  • Open Access

    ARTICLE

    Cross-Validation Convolution Neural Network-Based Algorithm for Automated Detection of Diabetic Retinopathy

    S. Sudha*, A. Srinivasan, T. Gayathri Devi

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1985-2000, 2023, DOI:10.32604/csse.2023.030960

    Abstract The substantial vision loss due to Diabetic Retinopathy (DR) mainly damages the blood vessels of the retina. These feature changes in the blood vessels fail to exist any manifestation in the eye at its initial stage, if this problem doesn’t exhibit initially, that leads to permanent blindness. So, this type of disorder can be only screened and identified through the processing of fundus images. The different stages in DR are Micro aneurysms (Ma), Hemorrhages (HE), and Exudates, and the stages in lesion show the chance of DR. For the advancement of early detection of DR… More >

  • Open Access

    ARTICLE

    Stage-Wise Categorization and Prediction of Diabetic Retinopathy Using Ensemble Learning and 2D-CNN

    N. M. Balamurugan1,*, K. Maithili2, T. K. S. Rathish Babu3, M. Adimoolam4

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 499-514, 2023, DOI:10.32604/iasc.2023.031661

    Abstract Diabetic Eye Disease (DED) is a fundamental cause of blindness in human beings in the medical world. Different techniques are proposed to forecast and examine the stages in Prognostication of Diabetic Retinopathy (DR). The Machine Learning (ML) and the Deep Learning (DL) algorithms are the predominant techniques to project and explore the images of DR. Even though some solutions were adapted to challenge the cause of DR disease, still there should be an efficient and accurate DR prediction to be adapted to refine its performance. In this work, a hybrid technique was proposed for classification… More >

  • Open Access

    ARTICLE

    Detection of Diabetic Retinopathy from Retinal Images Using DenseNet Models

    R. Nandakumar1, P. Saranya2,*, Vijayakumar Ponnusamy3, Subhashree Hazra2, Antara Gupta2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 279-292, 2023, DOI:10.32604/csse.2023.028703

    Abstract A prevalent diabetic complication is Diabetic Retinopathy (DR), which can damage the retina’s veins, leading to a severe loss of vision. If treated in the early stage, it can help to prevent vision loss. But since its diagnosis takes time and there is a shortage of ophthalmologists, patients suffer vision loss even before diagnosis. Hence, early detection of DR is the necessity of the time. The primary purpose of the work is to apply the data fusion/feature fusion technique, which combines more than one relevant feature to predict diabetic retinopathy at an early stage with… More >

  • Open Access

    ARTICLE

    Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model

    V. Thanikachalam1,*, M. G. Kavitha2, V. Sivamurugan1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2129-2145, 2023, DOI:10.32604/csse.2023.026527

    Abstract In recent times, Internet of Things (IoT) and Deep Learning (DL) models have revolutionized the diagnostic procedures of Diabetic Retinopathy (DR) in its early stages that can save the patient from vision loss. At the same time, the recent advancements made in Machine Learning (ML) and DL models help in developing Computer Aided Diagnosis (CAD) models for DR recognition and grading. In this background, the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network (ODBN) model i.e., NS-ODBN model for diagnosis of DR. The presented model involves… More >

Displaying 11-20 on page 2 of 44. Per Page