Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Comparative Study of Transfer Learning Models for Retinal Disease Diagnosis from Fundus Images

    Kuntha Pin1, Jee Ho Chang2, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5821-5834, 2022, DOI:10.32604/cmc.2022.021943 - 11 October 2021

    Abstract While the usage of digital ocular fundus image has been widespread in ophthalmology practice, the interpretation of the image has been still on the hands of the ophthalmologists which are quite costly. We explored a robust deep learning system that detects three major ocular diseases: diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD). The proposed method is composed of two steps. First, an initial quality evaluation in the classification system is proposed to filter out poor-quality images to enhance its performance, a technique that has not been explored previously. Second, the transfer learning… More >

  • Open Access

    ARTICLE

    A Feature Selection Strategy to Optimize Retinal Vasculature Segmentation

    José Escorcia-Gutierrez1,4,*, Jordina Torrents-Barrena4, Margarita Gamarra2, Natasha Madera1, Pedro Romero-Aroca3, Aida Valls4, Domenec Puig4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2971-2989, 2022, DOI:10.32604/cmc.2022.020074 - 27 September 2021

    Abstract Diabetic retinopathy (DR) is a complication of diabetes mellitus that appears in the retina. Clinitians use retina images to detect DR pathological signs related to the occlusion of tiny blood vessels. Such occlusion brings a degenerative cycle between the breaking off and the new generation of thinner and weaker blood vessels. This research aims to develop a suitable retinal vasculature segmentation method for improving retinal screening procedures by means of computer-aided diagnosis systems. The blood vessel segmentation methodology relies on an effective feature selection based on Sequential Forward Selection, using the error rate of a… More >

  • Open Access

    ARTICLE

    Enhanced Detection of Glaucoma on Ensemble Convolutional Neural Network for Clinical Informatics

    D. Stalin David1,*, S. Arun Mozhi Selvi2, S. Sivaprakash3, P. Vishnu Raja4, Dilip Kumar Sharma5, Pankaj Dadheech6, Sudhakar Sengan7

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2563-2579, 2022, DOI:10.32604/cmc.2022.020059 - 27 September 2021

    Abstract Irretrievable loss of vision is the predominant result of Glaucoma in the retina. Recently, multiple approaches have paid attention to the automatic detection of glaucoma on fundus images. Due to the interlace of blood vessels and the herculean task involved in glaucoma detection, the exactly affected site of the optic disc of whether small or big size cup, is deemed challenging. Spatially Based Ellipse Fitting Curve Model (SBEFCM) classification is suggested based on the Ensemble for a reliable diagnosis of Glaucoma in the Optic Cup (OC) and Optic Disc (OD) boundary correspondingly. This research deploys… More >

  • Open Access

    ARTICLE

    A Multilevel Deep Feature Selection Framework for Diabetic Retinopathy Image Classification

    Farrukh Zia1, Isma Irum1, Nadia Nawaz Qadri1, Yunyoung Nam2,*, Kiran Khurshid3, Muhammad Ali1, Imran Ashraf4, Muhammad Attique Khan4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2261-2276, 2022, DOI:10.32604/cmc.2022.017820 - 27 September 2021

    Abstract Diabetes or Diabetes Mellitus (DM) is the upset that happens due to high glucose level within the body. With the passage of time, this polygenic disease creates eye deficiency referred to as Diabetic Retinopathy (DR) which can cause a major loss of vision. The symptoms typically originate within the retinal space square in the form of enlarged veins, liquid dribble, exudates, haemorrhages and small scale aneurysms. In current therapeutic science, pictures are the key device for an exact finding of patients’ illness. Meanwhile, an assessment of new medicinal symbolisms stays complex. Recently, Computer Vision (CV)… More >

  • Open Access

    ARTICLE

    Intelligent and Integrated Framework for Exudate Detection in Retinal Fundus Images

    Muhammad Shujaat1, Numan Aslam1, Iram Noreen1, Muhammad Khurram Ehsan1,*, Muhammad Aasim Qureshi1, Aasim Ali1, Neelma Naz2, Imtisal Qadeer3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 663-672, 2021, DOI:10.32604/iasc.2021.019194 - 11 August 2021

    Abstract Diabetic Retinopathy (DR) is a disease of the retina caused by diabetes. The existence of exudates in the retina is the primary visible sign of DR. Early exudate detection can prevent patients from the severe conditions of DR An intelligent framework is proposed that serves two purposes. First, it highlights the features of exudate from fundus images using an image processing approach. Afterwards, the enhanced features are used as input to train Alexnet for the detection of exudates. The proposed framework is comprised on three stages that include pre-processing, image segmentation, and classification. During the… More >

  • Open Access

    ARTICLE

    Comparison of Detection and Classification of Hard Exudates Using Artificial Neural System vs. SVM Radial Basis Function in Diabetic Retinopathy

    V. Sudha1,*, T. R. Ganesh Babu2, N. Vikram1, R. Raja2

    Molecular & Cellular Biomechanics, Vol.18, No.3, pp. 139-145, 2021, DOI:10.32604/mcb.2021.016056 - 15 July 2021

    Abstract Diabetic Retinopathy (DR) is a disease that occurs in the eye which results in blindness as it passes to proliferative stage. Diabetes can significantly result in symptoms like blurring of vision, kidney failure, nervous damage. Hence it has become necessary to identify retinal damage that occurs in diabetic eye due to raised glucose level in its initial stage itself. Hence automated detection of anamoly has become very essential. The appearance of crimson and yellow lesions is considered as the earliest symptoms of DR which are called as hemorrhages and exudates. If DR is analysed at… More >

  • Open Access

    ARTICLE

    Recognition and Detection of Diabetic Retinopathy Using Densenet-65 Based Faster-RCNN

    Saleh Albahli1, Tahira Nazir2,*, Aun Irtaza2, Ali Javed3

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1333-1351, 2021, DOI:10.32604/cmc.2021.014691 - 05 February 2021

    Abstract Diabetes is a metabolic disorder that results in a retinal complication called diabetic retinopathy (DR) which is one of the four main reasons for sightlessness all over the globe. DR usually has no clear symptoms before the onset, thus making disease identification a challenging task. The healthcare industry may face unfavorable consequences if the gap in identifying DR is not filled with effective automation. Thus, our objective is to develop an automatic and cost-effective method for classifying DR samples. In this work, we present a custom Faster-RCNN technique for the recognition and classification of DR… More >

  • Open Access

    ARTICLE

    Classification of Fundus Images Based on Deep Learning for Detecting Eye Diseases

    Nakhim Chea1, Yunyoung Nam2,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 411-426, 2021, DOI:10.32604/cmc.2021.013390 - 12 January 2021

    Abstract Various techniques to diagnose eye diseases such as diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD), are possible through deep learning algorithms. A few recent studies have examined a couple of major diseases and compared them with data from healthy subjects. However, multiple major eye diseases, such as DR, GLC, and AMD, could not be detected simultaneously by computer-aided systems to date. There were just high-performance-outcome researches on a pair of healthy and eye-diseased group, besides of four categories of fundus image classification. To have a better knowledge of multi-categorical classification of fundus… More >

  • Open Access

    REVIEW

    Detection and Grading of Diabetic Retinopathy in Retinal Images Using Deep Intelligent Systems: A Comprehensive Review

    H. Asha Gnana Priya1, J. Anitha1, Daniela Elena Popescu2, Anju Asokan1, D. Jude Hemanth1, Le Hoang Son3,4,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2771-2786, 2021, DOI:10.32604/cmc.2021.012907 - 28 December 2020

    Abstract Diabetic Retinopathy (DR) is an eye disease that mainly affects people with diabetes. People affected by DR start losing their vision from an early stage even though the symptoms are identified only at the later stage. Once the vision is lost, it cannot be regained but can be prevented from causing any further damage. Early diagnosis of DR is required for preventing vision loss, for which a trained ophthalmologist is required. The clinical practice is time-consuming and is not much successful in identifying DR at early stages. Hence, Computer-Aided Diagnosis (CAD) system is a suitable More >

  • Open Access

    ARTICLE

    An Optimal Deep Learning Based Computer-Aided Diagnosis System for Diabetic Retinopathy

    Phong Thanh Nguyen1, Vy Dang Bich Huynh2, Khoa Dang Vo1, Phuong Thanh Phan1, Eunmok Yang3,*, Gyanendra Prasad Joshi4

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2815-2830, 2021, DOI:10.32604/cmc.2021.012315 - 28 December 2020

    Abstract Diabetic Retinopathy (DR) is a significant blinding disease that poses serious threat to human vision rapidly. Classification and severity grading of DR are difficult processes to accomplish. Traditionally, it depends on ophthalmoscopically-visible symptoms of growing severity, which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity. This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization (OPSO) algorithm-based Convolutional Neural Network (CNN) Model EOPSO-CNN in order to perform DR detection and grading. The proposed EOPSO-CNN model involves three main processes such as preprocessing, feature extraction, and classification.… More >

Displaying 31-40 on page 4 of 44. Per Page