Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network

    Gul Nawaz1, Muhammad Junaid1, Adnan Akhunzada2, Abdullah Gani2,*, Shamyla Nawazish3, Asim Yaqub3, Adeel Ahmed1, Huma Ajab4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2157-2178, 2023, DOI:10.32604/cmc.2023.026952

    Abstract Distributed denial of service (DDoS) attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user. We proposed a deep neural network (DNN) model for the detection of DDoS attacks in the Software-Defined Networking (SDN) paradigm. SDN centralizes the control plane and separates it from the data plane. It simplifies a network and eliminates vendor specification of a device. Because of this open nature and centralized control, SDN can easily become a victim of DDoS attacks. We proposed a supervised Developed Deep Neural Network (DDNN) model that can… More >

  • Open Access

    ARTICLE

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

    Laila M. Halman, Mohammed J. F. Alenazi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1469-1483, 2024, DOI:10.32604/cmes.2023.028077

    Abstract The healthcare sector holds valuable and sensitive data. The amount of this data and the need to handle, exchange, and protect it, has been increasing at a fast pace. Due to their nature, software-defined networks (SDNs) are widely used in healthcare systems, as they ensure effective resource utilization, safety, great network management, and monitoring. In this sector, due to the value of the data, SDNs face a major challenge posed by a wide range of attacks, such as distributed denial of service (DDoS) and probe attacks. These attacks reduce network performance, causing the degradation of… More > Graphic Abstract

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

  • Open Access

    ARTICLE

    Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks

    Shadi Al-Sarawi1, Mohammed Anbar1,*, Basim Ahmad Alabsi2, Mohammad Adnan Aladaileh3, Shaza Dawood Ahmed Rihan2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 491-515, 2023, DOI:10.32604/cmc.2023.041108

    Abstract The Internet of Things (IoT) consists of interconnected smart devices communicating and collecting data. The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standard protocol for Internet Protocol Version 6 (IPv6) in the IoT. However, RPL is vulnerable to various attacks, including the sinkhole attack, which disrupts the network by manipulating routing information. This paper proposes the Unweighted Voting Method (UVM) for sinkhole node identification, utilizing three key behavioral indicators: DODAG Information Object (DIO) Transaction Frequency, Rank Harmony, and Power Consumption. These indicators have been carefully selected based on their contribution to sinkhole… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Distributed Denial of Service Detection Approach for Early Warning in Internet Exchange Points

    Salem Alhayani*, Diane R. Murphy

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2235-2259, 2023, DOI:10.32604/cmc.2023.038003

    Abstract The Internet service provider (ISP) is the heart of any country’s Internet infrastructure and plays an important role in connecting to the World Wide Web. Internet exchange point (IXP) allows the interconnection of two or more separate network infrastructures. All Internet traffic entering a country should pass through its IXP. Thus, it is an ideal location for performing malicious traffic analysis. Distributed denial of service (DDoS) attacks are becoming a more serious daily threat. Malicious actors in DDoS attacks control numerous infected machines known as botnets. Botnets are used to send numerous fake requests to… More >

  • Open Access

    ARTICLE

    Toward Secure Software-Defined Networks Using Machine Learning: A Review, Research Challenges, and Future Directions

    Muhammad Waqas Nadeem1,*, Hock Guan Goh1, Yichiet Aun1, Vasaki Ponnusamy2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2201-2217, 2023, DOI:10.32604/csse.2023.039893

    Abstract Over the past few years, rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems. As a result, greater intelligence is necessary to effectively manage, optimize, and maintain these systems. Due to their distributed nature, machine learning models are challenging to deploy in traditional networks. However, Software-Defined Networking (SDN) presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes. SDN provides a centralized network view and allows for dynamic updates of flow rules and software-based traffic analysis. While the… More >

  • Open Access

    ARTICLE

    Adaptive Butterfly Optimization Algorithm (ABOA) Based Feature Selection and Deep Neural Network (DNN) for Detection of Distributed Denial-of-Service (DDoS) Attacks in Cloud

    S. Sureshkumar1,*, G .K. D. Prasanna Venkatesan2, R. Santhosh3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1109-1123, 2023, DOI:10.32604/csse.2023.036267

    Abstract Cloud computing technology provides flexible, on-demand, and completely controlled computing resources and services are highly desirable. Despite this, with its distributed and dynamic nature and shortcomings in virtualization deployment, the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties. The Intrusion Detection System (IDS) is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources. DDoS attacks are becoming more frequent and powerful, and their attack pathways are continually changing, which requiring the development of new detection methods. Here… More >

  • Open Access

    ARTICLE

    DDoS Attack Detection in Cloud Computing Based on Ensemble Feature Selection and Deep Learning

    Yousef Sanjalawe1,2,*, Turke Althobaiti3,4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3571-3588, 2023, DOI:10.32604/cmc.2023.037386

    Abstract Intrusion Detection System (IDS) in the cloud Computing (CC) environment has received paramount interest over the last few years. Among the latest approaches, Deep Learning (DL)-based IDS methods allow the discovery of attacks with the highest performance. In the CC environment, Distributed Denial of Service (DDoS) attacks are widespread. The cloud services will be rendered unavailable to legitimate end-users as a consequence of the overwhelming network traffic, resulting in financial losses. Although various researchers have proposed many detection techniques, there are possible obstacles in terms of detection performance due to the use of insignificant traffic… More >

  • Open Access

    ARTICLE

    A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques

    Anitha Thangasamy*, Bose Sundan, Logeswari Govindaraj

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.032078

    Abstract The recent development of cloud computing offers various services on demand for organization and individual users, such as storage, shared computing space, networking, etc. Although Cloud Computing provides various advantages for users, it remains vulnerable to many types of attacks that attract cyber criminals. Distributed Denial of Service (DDoS) is the most common type of attack on cloud computing. Consequently, Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks. Since DDoS attacks have become increasingly widespread, it becomes difficult for some DDoS attack methods based on individual… More >

  • Open Access

    ARTICLE

    HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework

    Magdy M. Fadel1,*, Sally M. El-Ghamrawy2, Amr M. T. Ali-Eldin1, Mohammed K. Hassan3, Ali I. El-Desoky1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2293-2312, 2022, DOI:10.32604/cmc.2022.028287

    Abstract Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of More >

  • Open Access

    ARTICLE

    R-IDPS: Real Time SDN-Based IDPS System for IoT Security

    Noman Mazhar1,2, Rosli Saleh1,*, Reza Zaba1,3, Muhammad Zeeshan4, M. Muzaffar Hameed1, Nauman Khan1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3099-3118, 2022, DOI:10.32604/cmc.2022.028285

    Abstract The advent of the latest technologies like the Internet of things (IoT) transforms the world from a manual to an automated way of lifestyle. Meanwhile, IoT sector open numerous security challenges. In traditional networks, intrusion detection and prevention systems (IDPS) have been the key player in the market to ensure security. The challenges to the conventional IDPS are implementation cost, computing power, processing delay, and scalability. Further, online machine learning model training has been an issue. All these challenges still question the IoT network security. There has been a lot of research for IoT based… More >

Displaying 1-10 on page 1 of 18. Per Page