Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Simulation Study of the Control Strategy of a DC Inverter Heat Pump Using a DC Distribution Network

    Siwei Han1,*, Xianglong Li2, Wei Zhao1, Linyu Wang1, Anqi Liang2, Shuang Zeng2

    Energy Engineering, Vol.120, No.6, pp. 1421-1444, 2023, DOI:10.32604/ee.2023.027094

    Abstract Photovoltaics, energy storage, direct current and flexibility (PEDF) are important pillars of achievement on the path to manufacturing nearly zero energy buildings (NZEBs). HVAC systems, which are an important part of public buildings, play a key role in adapting to PDEF systems. This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems. Along with the characteristics of a DC distribution network and different operating conditions, a DC inverter heat… More >

  • Open Access

    ARTICLE

    Analysis of Power Quality for Distribution Networks Using Active Compensator

    K. Naresh Kumar1,*, S. Srinath2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2623-2638, 2023, DOI:10.32604/iasc.2023.031713

    Abstract This paper concentrates on compensating the power quality issues which have been increased in day-to-day life due to the enormous usage of loads with power electronic control. One such solution is compensating devices like Pension Protection Fund (PPF), Active power filter (APF), hybrid power filter (HPF), etc., which are used to overcome Power Quality (PQ) issues. The proposed method used here is an active compensator called unified power quality conditioner (UPQC) which is a combination of shunt and series type active filter connected via a common DC link. The primary objective is to investigate the… More >

  • Open Access

    ARTICLE

    Research on Comprehensive Control of Power Quality of Port Distribution Network Considering Large-Scale Access of Shore Power Load

    Yuqian Qi*, Mingshui Li, Yu Lu, Baitong Li

    Energy Engineering, Vol.120, No.5, pp. 1185-1201, 2023, DOI:10.32604/ee.2023.025574

    Abstract In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load, a method of power quality management of port distribution network is proposed. Based on the objective function of the best power quality management effect and the smallest investment cost of the management device, the optimization model of power quality management in the distribution network after the large-scale application of large-capacity shore power is constructed. Based on the balance between the economic demand of distribution network resources optimization and power quality management capability, the power More >

  • Open Access

    ARTICLE

    Blockchain-Based Power Transaction Method for Active Distribution Network

    Fei Zeng1, Zhinong Wei1, Haiteng Han1,*, Yang Chen2

    Energy Engineering, Vol.120, No.5, pp. 1067-1080, 2023, DOI:10.32604/ee.2023.022479

    Abstract A blockchain-based power transaction method is proposed for Active Distribution Network (ADN), considering the poor security and high cost of a centralized power trading system. Firstly, the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks. Secondly, considering the transaction needs between users and power suppliers in ADN, an energy request mechanism is proposed, and the optimization objective function is designed by integrating cost aware requests and storage aware requests. Finally, the particle swarm optimization algorithm is used for multi-objective optimal search to find the power More >

  • Open Access

    ARTICLE

    Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation

    Saurabh Awasthi*, Gagan Singh, Nafees Ahamad

    Energy Engineering, Vol.120, No.4, pp. 811-829, 2023, DOI:10.32604/ee.2023.026863

    Abstract A distributed generation system (DG) has several benefits over a traditional centralized power system. However, the protection area in the case of the distributed generator requires special attention as it encounters stability loss, failure re-closure, fluctuations in voltage, etc. And thereby, it demands immediate attention in identifying the location & type of a fault without delay especially when occurred in a small, distributed generation system, as it would adversely affect the overall system and its operation. In the past, several methods were proposed for classification and localisation of a fault in a distributed generation system.… More >

  • Open Access

    ARTICLE

    Electric Vehicle Charging Capacity of Distribution Network Considering Conventional Load Composition

    Pengwei Yang1, Yuqi Cao2, Jie Tan2, Junfa Chen1, Chao Zhang1, Yan Wang1, Haifeng Liang2,*

    Energy Engineering, Vol.120, No.3, pp. 743-762, 2023, DOI:10.32604/ee.2023.024128

    Abstract At present, the large-scale access to electric vehicles (EVs) is exerting considerable pressure on the distribution network. Hence, it is particularly important to analyze the capacity of the distribution network to accommodate EVs. To this end, we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load. First, the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed. Second, the charging behavior of an EV is simulated by combining the Monte Carlo method and the trip chain theory. After obtaining… More >

  • Open Access

    ARTICLE

    Stability Analysis and Control of DC Distribution System with Electric Vehicles

    Zhijie Zheng1, Song Zhang1, Xiaolei Zhang2, Bo Yang1, Fang Yan3, Xiaoning Ge3,*

    Energy Engineering, Vol.120, No.3, pp. 633-647, 2023, DOI:10.32604/ee.2022.024081

    Abstract The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations. The current interpretation of the oscillation mechanism has not been unified. Firstly, this paper established the complete state-space model of the distribution system consisting of a large number of electric vehicles, characteristic equation of the distribution network system is derived by establishing a state-space model, and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained. Secondly, based on eigenvalue analysis, the oscillation modes and More >

  • Open Access

    ARTICLE

    Optimization of the Placement and Size of Photovoltaic Source

    Maawiya Ould Sidi1,*, Mustafa Mosbah2, Rabie Zine3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1855-1870, 2023, DOI:10.32604/cmc.2023.030032

    Abstract This paper presents a new optimization study of the placement and size of a photovoltaic source (PVS) in a distribution grid, based on annual records of meteorological parameters (irradiance, temperature). Based on the recorded data, the production output as well as the daily average power (24-h vector) of the PVS is extracted over the year. When a power vector is available, it can be used as an input when searching for the optimal size of the PVS. This allows to take into account the constraint of the variation of the power generated by this source More >

  • Open Access

    ARTICLE

    Voltage Profile Enhancement and Power Loss Reduction with Economic Feasibility Using Small Capacity Distribution Transformers

    Rasool M. Imran1,2,*, Mohammed R. Saeed1, Mohammed Amer Mohammed3, Osama A. Suhry3, Ihsan H. Abdulqadder4, Hasan Wahhab Salih5, Mohammed R. Almallah6, Firas M. F. Flaih3

    Energy Engineering, Vol.119, No.6, pp. 2447-2467, 2022, DOI:10.32604/ee.2022.021871

    Abstract

    Usually, rural areas can be electrified via three-phase distribution transformers with relatively large capacities. In such areas, low voltage lines are used for long distances, which cause power losses and voltage drop for different types of consumers. Reducing losses and improving voltage profiles in rural distribution networks are significant challenges for electricity distribution companies. However different solutions were proposed in the literature to overcome these challenges, most of them face difficulties when applied in the conventional distribution network. To address the above issues, an applicable solution is proposed in this paper by installing a number

    More >

  • Open Access

    ARTICLE

    Optimal Allocation of Public Transport Hub Based on Load Loss Value and the Economy of Distribution Network

    Yuying Zhang1,2,*, Chen Liang2, Bo Sun2, Qiang Chen3, Mingyang Lei3

    Energy Engineering, Vol.119, No.6, pp. 2211-2229, 2022, DOI:10.32604/ee.2022.020341

    Abstract The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities. Therefore, the location and construction scale of bus hubs will greatly affect the operation costs and benefits of an urban distribution network in the future. Through the scientific and reasonable planning of public transport hubs on the premise of meeting the needs of basic public transport services, it can reduce the negative impact of electric bus charging loads upon the power grids. Furthermore, it can use its flexible operation characteristics to provide flexible… More >

Displaying 21-30 on page 3 of 45. Per Page