Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access


    Distribution Network Reconfiguration Using Hybrid Optimization Technique

    S. Arun Kumar*, S. Padma, S. Madhubalan

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 777-789, 2022, DOI:10.32604/iasc.2022.023702

    Abstract Energy management carried in a power system by configuration process is a difficult activity. So, reconfiguration has been introduced to solve this problem. Numerous optimization topologies have been utilized to solve this problem so far. However, they exhibit some drawbacks such as convergence, etc. Hence to overcome this issue, this work formulated a new hybrid optimization topology Genetic Algorithm Enabled Particle Swarm Optimization (PSOGA) to solve the energy configuration problem with low power loss in the Distribution System (DS). The proposed topology’s effectiveness was evaluated on the IEEE 33 bus Distribution System, and the results were compared to methods reported… More >

  • Open Access


    Multifunction Battery Energy Storage System for Distribution Networks

    Omar H. Abdalla1,*, Gamal Abdel-Salam2, Azza A. A. Mostafa3

    Energy Engineering, Vol.119, No.2, pp. 569-589, 2022, DOI:10.32604/ee.2022.018693

    Abstract Battery Energy Storage System (BESS) is one of the potential solutions to increase energy system flexibility, as BESS is well suited to solve many challenges in transmission and distribution networks. Examples of distribution network’s challenges, which affect network performance, are: (i) Load disconnection or technical constraints violation, which may happen during reconfiguration after fault, (ii) Unpredictable power generation change due to Photovoltaic (PV) penetration, (iii) Undesirable PV reverse power, and (iv) Low Load Factor (LF) which may affect electricity price. In this paper, the BESS is used to support distribution networks in reconfiguration after a fault, increasing Photovoltaic (PV) penetration,… More >

  • Open Access


    Evaluation of Green Development Level of Electric Energy in Distribution Network Based on Multilevel Fuzzy Comprehensive Evaluation

    Zhongfu Tan1,2, Jing Wang1,*, Caixia Tan1, Gejirifu De3,4

    Energy Engineering, Vol.119, No.1, pp. 331-357, 2022, DOI:10.32604/EE.2022.015700

    Abstract At present, there are few studies on the comprehensive evaluation of green power grid development in China, and all aspects of green power grid need to be evaluated. Therefore, this paper studies the green development level of power distribution network. This paper proposes a multi-level fuzzy comprehensive evaluation method, which first needs to classify the influencing factors. Therefore, this paper constructs an indicator system for the evaluation of green development of power distribution network from three dimensions. In order to avoid the influence of subjective factors, this paper adopts the model combining analytic hierarchy process and entropy weight method to… More >

  • Open Access


    Optimal Implementation of Photovoltaic and Battery Energy Storage in Distribution Networks

    Hussein Abdel-Mawgoud1, Salah Kamel1, Hegazy Rezk2,3, Tahir Khurshaid4, Sang-Bong Rhee4,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1463-1481, 2021, DOI:10.32604/cmc.2021.017995

    Abstract Recently, implementation of Battery Energy Storage (BES) with photovoltaic (PV) array in distribution networks is becoming very popular in overall the world. Integrating PV alone in distribution networks generates variable output power during 24-hours as it depends on variable natural source. PV can be able to generate constant output power during 24-hours by installing BES with it. Therefore, this paper presents a new application of a recent metaheuristic algorithm, called Slime Mould Algorithm (SMA), to determine the best size, and location of photovoltaic alone or with battery energy storage in the radial distribution system (RDS). This algorithm is modeled from… More >

  • Open Access


    Optimal Allocation of Comprehensive Resources for Large-Scale Access of Electric Kiln to the Distribution Network

    Dan Wu1, Yanbo Che1, Wei Li2,*, Wei He3, Dongyi Li4

    Energy Engineering, Vol.118, No.5, pp. 1549-1564, 2021, DOI:10.32604/EE.2021.014818

    Abstract With the significant progress of the “coal to electricity” project, the electric kiln equipment began to be connected to the distribution network on a large scale, which caused power quality problems such as low voltage, high harmonic distortion rate, and high reactive power loss. This paper proposes a two-stage power grid comprehensive resource optimization configuration model. A multi-objective optimization solution based on the joint simulation platform of Matlab and OpenDSS is developed. The solution aims to control harmonics and optimize reactive power. In the first stage, a multi-objective optimization model is established to minimize the active network loss, voltage deviation,… More >

  • Open Access


    Effect of Load on Transient Performance of Unearthed and Compensated Distribution Networks

    Nehmdoh A. Sabiha*, Hend I. Alkhammash

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 769-784, 2021, DOI:10.32604/iasc.2021.016752

    Abstract The maximum temperature that cable insulation can withstand determines the maximum load that the cable conductor can carry, which is called cable ampacity. However, a temperature far from this value under normal load conditions affects the transients due to earth faults in the distribution network. Accordingly, error estimation in the fault location occurs, and the smart grids do not accept such errors. Considering heterogenous unearthed and compensated distribution networks, the temperature rise in different underground cables is estimated under different load conditions. These loads are full load, three quarters (3/4) load, one half (1/2) load, and one quarter (1/4) load.… More >

  • Open Access


    Earth Fault Management for Smart Grids Interconnecting Sustainable Wind Generation

    Nagy I. Elkalashy*, Sattam Al Otaibi, Salah K. Elsayed, Yasser Ahmed, Essam Hendawi, Ayman Hoballah

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 477-491, 2021, DOI:10.32604/iasc.2021.016558

    Abstract In this study, the active traveling-wave fault location function is incorporated into the management of earth faults for smart unearthed and compensated distribution networks associated with distributed renewable generation. Unearthed and compensated networks are implemented mainly to attain service continuity, specifically during earth faults. This advantage is valued for service continuity of grid-interconnected renewable resources. However, overcurrent-based fault indicators are not efficient in indicating the fault path in these distribution networks. Accordingly, in this study, the active traveling-wave fault location is complemented using distributed Rogowski coil-based fault passage indicators. Active traveling waves are injected by switching the neutral point of… More >

  • Open Access


    Research on Distribution Network Full Cost-Benefit Optimization Considering Different Renewable Energy Penetration

    Tanzhong Fu1,2,3, Yu Xue1,*, Tancai Xia1, Wang Jing1, De Gejirifu1

    Energy Engineering, Vol.117, No.6, pp. 397-411, 2020, DOI:10.32604/EE.2020.011633

    Abstract To further study the impact of renewable energy penetration on the technical transformation of distribution networks. Based on the output power characteristics of wind power and photovoltaics, a renewable energy grid-connected capacity model and a distribution network full cost-benefit model were constructed. Based on this, to maximize the comprehensive income of the distribution network and the renewable energy penetration rate, to establish the technical reform optimization model and search for the optimal solution through the improved NSGA-II algorithm. Finally, the effectiveness of the proposed model was verified by setting up three scenarios of simultaneous wind power, grid-connected wind power, grid-connected… More >

  • Open Access


    The Optimization Study about Fault Self-Healing Restoration of Power Distribution Network Based on Multi-Agent Technology

    Fuquan Huang1, Zijun Liu1, Tinghuang Wang1, Haitai Zhang2, *, Tony Yip3

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 865-878, 2020, DOI:10.32604/cmc.2020.010724

    Abstract In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network, a fault recovery method based on multi-objective optimization algorithm is proposed. The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault, solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma, and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid. The system proposed in this study takes power distribution… More >

Displaying 31-40 on page 4 of 39. Per Page