Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage

    Yang Li1,2, Jianjun Zhao2, Xiaolong Yang2, He Wang1,*, Yuyan Wang1

    Energy Engineering, Vol.121, No.5, pp. 1263-1289, 2024, DOI:10.32604/ee.2024.046784

    Abstract Distributed photovoltaic (PV) is one of the important power sources for building a new power system with new energy as the main body. The rapid development of distributed PV has brought new challenges to the operation of distribution networks. In order to improve the absorption ability of large-scale distributed PV access to the distribution network, the AC/DC hybrid distribution network is constructed based on flexible interconnection technology, and a coordinated scheduling strategy model of hydrogen energy storage (HS) and distributed PV is established. Firstly, the mathematical model of distributed PV and HS system is established, and a comprehensive energy storage… More >

  • Open Access

    ARTICLE

    Enhancing Energy Efficiency with a Dynamic Trust Measurement Scheme in Power Distribution Network

    Yilei Wang1, Xin Sun1, Guiping Zheng2,3, Ahmar Rashid4, Sami Ullah5, Hisham Alasmary6, Muhammad Waqas7,8,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3909-3927, 2024, DOI:10.32604/cmc.2024.047767

    Abstract The application of Intelligent Internet of Things (IIoT) in constructing distribution station areas strongly supports platform transformation, upgrade, and intelligent integration. The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer, with the former using intelligent fusion terminals for real-time data collection and processing. However, the influx of multiple low-voltage in the smart grid raises higher demands for the performance, energy efficiency, and response speed of the substation fusion terminals. Simultaneously, it brings significant security risks to the entire distribution substation, posing a major challenge to the smart grid. In response to these challenges, a… More >

  • Open Access

    ARTICLE

    Design of a Multifrequency Signal Parameter Estimation Method for the Distribution Network Based on HIpST

    Bin Liu1, Shuai Liang1, Renjie Ding1, Shuguang Li2,*

    Energy Engineering, Vol.121, No.3, pp. 729-746, 2024, DOI:10.32604/ee.2023.044224

    Abstract The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks. Therefore, it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks. By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing, a multifrequency signal estimation approach based on HT-IpDFT-STWLS (HIpST) for distribution networks is provided. First, by introducing the Hilbert transform (HT), the influence of noise on the estimation algorithm is reduced. Second, signal frequency… More >

  • Open Access

    ARTICLE

    Optimal Location and Sizing of Multi-Resource Distributed Generator Based on Multi-Objective Artificial Bee Colony Algorithm

    Qiangfei Cao1, Huilai Wang2, Zijia Hui1, Lingyun Chen2,*

    Energy Engineering, Vol.121, No.2, pp. 499-521, 2024, DOI:10.32604/ee.2023.042702

    Abstract Distribution generation (DG) technology based on a variety of renewable energy technologies has developed rapidly. A large number of multi-type DG are connected to the distribution network (DN), resulting in a decline in the stability of DN operation. It is urgent to find a method that can effectively connect multi-energy DG to DN. photovoltaic (PV), wind power generation (WPG), fuel cell (FC), and micro gas turbine (MGT) are considered in this paper. A multi-objective optimization model was established based on the life cycle cost (LCC) of DG, voltage quality, voltage fluctuation, system network loss, power deviation of the tie-line, DG… More >

  • Open Access

    ARTICLE

    Distribution Line Longitudinal Protection Method Based on Virtual Measurement Current Restraint

    Wei Wang1, Yang Yu1, Simin Luo2,*, Wenlin Liu2, Wei Tang1, Yuanbo Ye1

    Energy Engineering, Vol.121, No.2, pp. 315-337, 2024, DOI:10.32604/ee.2023.042082

    Abstract As an effective approach to achieve the “dual-carbon” goal, the grid-connected capacity of renewable energy increases constantly. Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions. However, the inherent randomness, intermittency, and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics. Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources. Therefore, a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper. The positive… More >

  • Open Access

    ARTICLE

    Coordinated Voltage Control of Distribution Network Considering Multiple Types of Electric Vehicles

    Liang Liu, Guangda Xu*, Yuan Zhao, Yi Lu, Yu Li, Jing Gao

    Energy Engineering, Vol.121, No.2, pp. 377-404, 2024, DOI:10.32604/ee.2023.041311

    Abstract The couple between the power network and the transportation network (TN) is deepening gradually with the increasing penetration rate of electric vehicles (EV), which also poses a great challenge to the traditional voltage control scheme. In this paper, we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV. In the first stage, the action of on-load tap changer and capacitor banks, etc., are determined by optimal power flow calculation, and the node electricity price is also determined based on dynamic time-of-use tariff mechanism. In the second stage, multiple operating scenarios of multiple types… More >

  • Open Access

    ARTICLE

    Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation

    Caixia Tao, Shize Yang*, Taiguo Li

    Energy Engineering, Vol.121, No.1, pp. 187-201, 2024, DOI:10.32604/ee.2023.042421

    Abstract With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The Metropolis criterion is introduced into the simulated annealing algorithm to… More >

  • Open Access

    ARTICLE

    Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting

    Hua Leng1, Silin He2, Jian Qiu3, Feng Liu4,*, Xinfei Huang4, Jiran Zhu2

    Energy Engineering, Vol.121, No.1, pp. 77-94, 2024, DOI:10.32604/ee.2023.028340

    Abstract The distribution network exhibits complex structural characteristics, which makes fault localization a challenging task. Especially when a branch of the multi-branch distribution network fails, the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system. In this paper, the multi-branch mainline is decomposed into single branch lines, transforming the complex multi-branch fault location problem into a double-ended fault location problem. Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines, the endpoint reference time difference matrix S and the fault time difference… More >

  • Open Access

    ARTICLE

    Knowledge-Based Efficient N-1 Analysis Calculation Method for Urban Distribution Networks with CIM File Data

    Lingyu Liang1, Xiangyu Zhao1,*, Wenqi Huang1, Liming Sun2,3, Ziyao Wang3, Yaosen Zhan2

    Energy Engineering, Vol.120, No.12, pp. 2839-2856, 2023, DOI:10.32604/ee.2023.042042

    Abstract The N-1 criterion is a critical factor for ensuring the reliable and resilient operation of electric power distribution networks. However, the increasing complexity of distribution networks and the associated growth in data size have created a significant challenge for distribution network planners. To address this issue, we propose a fast N-1 verification procedure for urban distribution networks that combines CIM file data analysis with MILP-based mathematical modeling. Our proposed method leverages the principles of CIM file analysis for distribution network N-1 analysis. We develop a mathematical model of distribution networks based on CIM data and transfer it into MILP. We… More >

  • Open Access

    ARTICLE

    Distribution Network Optimization Model of Industrial Park with Distributed Energy Resources under the Carbon Neutral Targets

    Xiaobao Yu*, Kang Yang

    Energy Engineering, Vol.120, No.12, pp. 2741-2760, 2023, DOI:10.32604/ee.2023.028041

    Abstract Taking an industrial park as an example, this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources (DERs). The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data. To predict and analyze the load growth of the industrial park, an improved back-propagation algorithm is employed. Furthermore, the study classifies users within the industrial park according to their specific power consumption and supply requirements. This user segmentation allows for the introduction of three constraints: node voltage, wire current, and capacity of DERs. By incorporating these… More >

Displaying 1-10 on page 1 of 41. Per Page