Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Single-Phase Grounding Fault Identification in Distribution Networks with Distributed Generation Considering Class Imbalance across Different Network Topologies

    Lei Han1,*, Wanyu Ye1, Chunfang Liu2, Shihua Huang1, Chun Chen3, Luxin Zhan3, Siyuan Liang3

    Energy Engineering, Vol.122, No.12, pp. 4947-4969, 2025, DOI:10.32604/ee.2025.069040 - 27 November 2025

    Abstract In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources (DERs), the harmonic components injected by power-electronic interfacing converters, together with the inherently intermittent output of renewable generation, distort the zero-sequence current and continuously reshape its frequency spectrum. As a result, single-line-to-ground (SLG) faults exhibit a pronounced, strongly non-stationary behaviour that varies with operating point, load mix and DER dispatch. Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply, and they no longer satisfy the accuracy and universality required by practical protection systems. To overcome… More >

  • Open Access

    ARTICLE

    Energy Optimization Strategy for Reconfigurable Distribution Network with High Renewable Penetration Based on Bald Eagle Search Algorithm

    Jian Wang, Hui Qi, Lingyi Ji*, Zhengya Tang, Hui Qian

    Energy Engineering, Vol.122, No.11, pp. 4635-4651, 2025, DOI:10.32604/ee.2025.068667 - 27 October 2025

    Abstract This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation. The proposed strategy accounts for renewable generation costs, maintenance and operating expenses of energy storage systems, diesel generator operational costs, typical daily load profiles, and power balance constraints. A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows. The Bald Eagle Search (BES) meta-heuristic is adopted to solve the resulting constrained optimization problem. Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing More >

  • Open Access

    ARTICLE

    Configuration and Operation Optimization of Active Distribution Network Based on Wind-Solar-Hydrogen-Storage Integration

    Hongsheng Su1, Wenyao Su1, Yulong Che1,*, Xiping Ma2, Tian Zhao1, Limiao Ren1

    Energy Engineering, Vol.122, No.11, pp. 4777-4797, 2025, DOI:10.32604/ee.2025.068134 - 27 October 2025

    Abstract Aiming at the issues of insufficient carrying capacity, limited flexibility, and weak source-network-load-storage coordination capability in distribution networks under the background of high-proportion new energy integration. This study proposes a bi-level optimization model for ADN integrating hybrid wind-solar-hydrogen-storage systems. First, an electro-hydrogen coupling system framework is constructed, including models for electrolytic hydrogen production, hydrogen storage, and fuel cells. Meanwhile, typical scenarios of wind-solar joint output are developed using Copula functions to characterize the variability of renewable energy generation. Second, a bi-level optimization model for ADN with electrolytic hydrogen production and storage systems is established: the… More >

  • Open Access

    ARTICLE

    Fault Distance Estimation Method for DC Distribution Networks Based on Sparse Measurement of High-Frequency Electrical Quantities

    He Wang, Shiqiang Li*, Yiqi Liu, Jing Bian

    Energy Engineering, Vol.122, No.11, pp. 4497-4521, 2025, DOI:10.32604/ee.2025.065244 - 27 October 2025

    Abstract With the evolution of DC distribution networks from traditional radial topologies to more complex multi-branch structures, the number of measurement points supporting synchronous communication remains relatively limited. This poses challenges for conventional fault distance estimation methods, which are often tailored to simple topologies and are thus difficult to apply to large-scale, multi-node DC networks. To address this, a fault distance estimation method based on sparse measurement of high-frequency electrical quantities is proposed in this paper. First, a preliminary fault line identification model based on compressed sensing is constructed to effectively narrow the fault search range… More >

  • Open Access

    ARTICLE

    Load Balancing Control Strategy for Multi-Substation Flexible Interconnection Distribution Networks Considering Unbalanced Power Compensation

    Qiji Dai1, Jikai Li2,*, Bohui Ning1, Yutao Xu1, Chang Liu2, Xuan Zhang1

    Energy Engineering, Vol.122, No.10, pp. 4061-4080, 2025, DOI:10.32604/ee.2025.067304 - 30 September 2025

    Abstract Aiming at the challenge of complex load balancing coordination for a three-phase four-leg (3P4L) based multi-ended low voltage flexible DC distribution system (M-LVDC) considering unbalanced power compensation, this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC. Firstly, the topology and operation principle of the 3P4L-based M-LVDC system is introduced, and quasi-proportional resonant (QPR) based phase-split power current control for the 3P4L converter is proposed. Secondly, a load-balancing control strategy considering unbalanced compensation for 3P4L-based M-LVDC is presented, in which the control diagrams for each 3P4L-based converter… More >

  • Open Access

    ARTICLE

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

    Xin Zhang1,*, Shixing Zhang1, Lina Chen2, Jihong Zhang1, Peihong Yang1, Zilei Zhang1, Xiaoming Zhang1

    Energy Engineering, Vol.122, No.9, pp. 3647-3679, 2025, DOI:10.32604/ee.2025.067035 - 26 August 2025

    Abstract A park hydrogen-doped integrated energy system (PHIES) can maximize energy utilization as a system with multiple supplies. To realize win-win cooperation between the PHIES and active distribution network (ADN), the cooperative operation problem of multi-PHIES connected to the same ADN is studied. A low-carbon hybrid game coordination strategy for multi-PHIES accessing ADN based on dynamic carbon base price is proposed in the paper. Firstly, multi-PHIES are constructed to form a PHIES alliance, including a hydrogen-doped gas turbine (HGT), hydrogen-doped gas boiler (HGB), power to gas and carbon capture system (P2G-CCS), and other equipment. Secondly, a… More > Graphic Abstract

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

  • Open Access

    ARTICLE

    Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms: A Comprehensive Analysis of Power Quality Improvement

    Nisa Nacar Çıkan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3279-3327, 2025, DOI:10.32604/cmes.2025.065442 - 30 June 2025

    Abstract This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks (UPDNs), focusing on the complex 123-Bus test system. Three scenarios are investigated: (1) simultaneous power loss reduction and voltage profile improvement, (2) minimization of voltage and current unbalance indices under various operational cases, and (3) multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index, active power loss, and current unbalance index. Unlike previous research that oftensimplified system components, this work maintains all equipment, including capacitor banks, transformers, and voltage regulators, to ensure realistic results. The study evaluates twelve metaheuristic More >

  • Open Access

    ARTICLE

    Optimization of Reconfiguration and Resource Allocation for Distributed Generation and Capacitor Banks Using NSGA-II: A Multi-Scenario Approach

    Tareq Hamadneh1, Belal Batiha2, Frank Werner3,*, Mehrdad Ahmadi Kamarposhti4,*, Ilhami Colak5, El Manaa Barhoumi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1519-1548, 2025, DOI:10.32604/cmes.2025.063571 - 30 May 2025

    Abstract Reconfiguration, as well as optimal utilization of distributed generation sources and capacitor banks, are highly effective methods for reducing losses and improving the voltage profile, or in other words, the power quality in the power distribution system. Researchers have considered the use of distributed generation resources in recent years. There are numerous advantages to utilizing these resources, the most significant of which are the reduction of network losses and enhancement of voltage stability. Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Intersect Mutation Differential Evolution (IMDE) algorithms are used in this… More >

  • Open Access

    ARTICLE

    An Adaptive Virtual Impedance Control for Voltage and Frequency Regulation of Islanded Distribution Networks Based on Multi-Agent Consensus

    Jiran Zhu1, Silin He1, Chun Chen2,*, Li Zhou2, Hongqing Li1, Di Zhang1, Fenglin Hua1, Tianhao Zhu2

    Energy Engineering, Vol.122, No.6, pp. 2465-2483, 2025, DOI:10.32604/ee.2025.065453 - 29 May 2025

    Abstract In the islanded operation of distribution networks, due to the mismatch of line impedance at the inverter output, conventional droop control leads to inaccurate power sharing according to capacity, resulting in voltage and frequency fluctuations under minor external disturbances. To address this issue, this paper introduces an enhanced scheme for power sharing and voltage-frequency control. First, to solve the power distribution problem, we propose an adaptive virtual impedance control based on multi-agent consensus, which allows for precise active and reactive power allocation without requiring feeder impedance knowledge. Moreover, a novel consensus-based voltage and frequency control More >

  • Open Access

    ARTICLE

    Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting

    Huanan Yu, Chunhe Ye, Shiqiang Li*, He Wang, Jing Bian, Jinling Li

    Energy Engineering, Vol.122, No.6, pp. 2417-2448, 2025, DOI:10.32604/ee.2025.061214 - 29 May 2025

    Abstract With the increasing integration of large-scale distributed energy resources into the grid, traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load. Accounting for these issues, this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks. First, the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts, based on which, the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed. Subsequently, a multi-timescale optimization framework was constructed, incorporating the generation and load forecast uncertainties. More >

Displaying 1-10 on page 1 of 72. Per Page