Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,649)
  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities

    Vi Hoai Nam1, Chu Thi Minh Hue2, Dang Van Anh1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070605 - 10 November 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become integral components in smart city infrastructures, supporting applications such as emergency response, surveillance, and data collection. However, the high mobility and dynamic topology of Flying Ad Hoc Networks (FANETs) present significant challenges for maintaining reliable, low-latency communication. Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable. To overcome these limitations, this paper proposes an improved routing protocol based on reinforcement learning. This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware. The proposed method optimizes the selection of… More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    ARTICLE

    Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing

    Qingtao Meng, Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069970 - 10 November 2025

    Abstract This study proposes a lightweight rice disease detection model optimized for edge computing environments. The goal is to enhance the You Only Look Once (YOLO) v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency. To this end, a total of 3234 high-resolution images (2400 × 1080) were collected from three major rice diseases Rice Blast, Bacterial Blight, and Brown Spot—frequently found in actual rice cultivation fields. These images served as the training dataset. The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    REVIEW

    Unveiling Zero-Click Attacks: Mapping MITRE ATT&CK Framework for Enhanced Cybersecurity

    Md Shohel Rana1,2,3,4,*, Tonmoy Ghosh3, Mohammad Nur Nobi5, Anichur Rahman1,6,*, Andrew H. Sung4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-38, 2026, DOI:10.32604/cmc.2025.069212 - 10 November 2025

    Abstract Zero-click attacks represent an advanced cybersecurity threat, capable of compromising devices without user interaction. High-profile examples such as Pegasus, Simjacker, Bluebugging, and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access, exfiltrate data, and enable long-term surveillance. Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging. This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework, a widely adopted standard for modeling adversarial behavior. Through this mapping, we categorize real-world attack vectors and better understand how… More >

  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    DRL-Based Cross-Regional Computation Offloading Algorithm

    Lincong Zhang1, Yuqing Liu1, Kefeng Wei2, Weinan Zhao1, Bo Qian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069108 - 10 November 2025

    Abstract In the field of edge computing, achieving low-latency computational task offloading with limited resources is a critical research challenge, particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications. In scenarios where edge servers are sparsely deployed, the lack of coordination and information sharing often leads to load imbalance, thereby increasing system latency. Furthermore, in regions without edge server coverage, tasks must be processed locally, which further exacerbates latency issues. To address these challenges, we propose a novel and efficient Deep Reinforcement Learning (DRL)-based approach aimed at minimizing average… More >

  • Open Access

    ARTICLE

    Lightweight Multi-Agent Edge Framework for Cybersecurity and Resource Optimization in Mobile Sensor Networks

    Fatima Al-Quayed*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069102 - 10 November 2025

    Abstract Due to the growth of smart cities, many real-time systems have been developed to support smart cities using Internet of Things (IoT) and emerging technologies. They are formulated to collect the data for environment monitoring and automate the communication process. In recent decades, researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations. However, the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity. These systems are vulnerable to a variety of cyberattacks, including unauthorized access,… More >

Displaying 1-10 on page 1 of 2649. Per Page