Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,073)
  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open Access

    ARTICLE

    Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes

    Zhaoan Wang1, Kishlay Jha2, Shaoping Xiao1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1319-1336, 2024, DOI:10.32604/cmc.2024.055809 - 15 October 2024

    Abstract Climate change poses significant challenges to agricultural management, particularly in adapting to extreme weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning (RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning (CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024

    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

  • Open Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024

    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

  • Open Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024

    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open Access

    ARTICLE

    PSMFNet: Lightweight Partial Separation and Multiscale Fusion Network for Image Super-Resolution

    Shuai Cao1,3, Jianan Liang1,2,*, Yongjun Cao1,2,3,4, Jinglun Huang1,4, Zhishu Yang1,4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1491-1509, 2024, DOI:10.32604/cmc.2024.049314 - 15 October 2024

    Abstract The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution (SISR) research. However, the high computational demands of most SR techniques hinder their applicability to edge devices, despite their satisfactory reconstruction performance. These methods commonly use standard convolutions, which increase the convolutional operation cost of the model. In this paper, a lightweight Partial Separation and Multiscale Fusion Network (PSMFNet) is proposed to alleviate this problem. Specifically, this paper introduces partial convolution (PConv), which reduces the redundant convolution operations throughout the model by separating some of the features of… More >

  • Open Access

    PROCEEDINGS

    Numerical Investigation on Blasting Failure and Impact Effects of Marine Launching Airbags

    Jingjing Liu1, Long Yu1,*, Xiaoyan Li2, Jing Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012234

    Abstract Owing to uncontrollable deformation during the launching process, significant hazards such as airbag blast failure can be observed, which can cause severe damage to surrounding structures. Involving gas-solid coupling and nonlinear damage, the analysis and evaluation of airbag blasts are complex. Therefore, an effective method to analyze the possible blast behavior by coupling smoothed particle hydrodynamics (SPH) and the finite element method (FEM) has been presented in this study. First, a single airbag compression model was established to calculate the stiffness curve and the rationality of the numerical method was verified through comparison with experiments.… More >

  • Open Access

    PROCEEDINGS

    An Energy-Based Local-Nonlocal Coupling Scheme for Heterogeneous Material Brittle Fractures: Analysis and Simulations

    Shaoqi Zheng1, Zihao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012200

    Abstract This study proposes a novel method for predicting the microcrack propagation in composites based on coupling the local and non-local micromechanics. The special feature of this method is that it can take full advantages of both the continuum micromechanics as a local model and peridynamic micromechanics as a non-local model to achieve composite fracture simulation with a higher level of accuracy and efficiency. Based on the energy equivalence, we first establish the equivalent continuum micromechanics model with equivalent stiffness operators through peridynamic micromechanics model. These two models are then coupled into a closed equation system, More >

Displaying 1-10 on page 1 of 2073. Per Page