Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (826)
  • Open Access

    ARTICLE

    Various Organic Nutrient Sources in Combinations with Inorganic Fertilizers Influence the Yield and Quality of Sweet Corn (Zea mays L. saccharata) in New Alluvial Soils of West Bengal, India

    Anindita Das1, Kanu Murmu2, Biplab Mitra3, Pintoo Bandopadhyay2, Ritesh Kundu4, Moupiya Roy5, Saleh Alfarraj6, Mohammad Javed Ansari7, Marian Brestic8, Akbar Hossain9,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 763-776, 2024, DOI:10.32604/phyton.2024.049473

    Abstract Nutrient management plays a crucial role in the yield and quality of sweet corn. A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources of nutrients in combination with inorganic sources on the yield and quality of sweet corn under new alluvial soils of West Bengal, India. Treatments were: T: Control (without fertilizers); T: 100% recommended dose (RDF) of chemical fertilizers (CF) (RDF CF); T: 100% recommended dose of N (RDN) through vermicompost (VC) (RDN VC); T: 50 RDN through CF + 50% RDN through VC (RDN CF… More >

  • Open Access

    ARTICLE

    A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine

    Lingjie Zhao, Cong Li*

    Energy Engineering, Vol.121, No.5, pp. 1363-1380, 2024, DOI:10.32604/ee.2024.046918

    Abstract The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder, thereby reducing NOx emissions. To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions, this study will perform a one-dimensional simulation of the performance of a marine diesel engine, as well as a three-dimensional simulation of the combustion in the cylinder. A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object. The chassis dynamometer and other related equipment are used to build the test system,… More >

  • Open Access

    REVIEW

    Recent Developments in Authentication Schemes Used in Machine-Type Communication Devices in Machine-to-Machine Communication: Issues and Challenges

    Shafi Ullah1, Sibghat Ullah Bazai1,*, Mohammad Imran2, Qazi Mudassar Ilyas3,*, Abid Mehmood4, Muhammad Asim Saleem5, Muhmmad Aasim Rafique3, Arsalan Haider6, Ilyas Khan7, Sajid Iqbal3, Yonis Gulzar4, Kauser Hameed3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 93-115, 2024, DOI:10.32604/cmc.2024.048796

    Abstract Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices (MTCDs) regularly share extensive data without human intervention while making all types of decisions. These decisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeat monitoring, and several different alert systems. Many of these devices simultaneously share data to form an automated system. The data shared between machine-type communication devices (MTCDs) is prone to risk due to limited computational power, internal memory, and energy capacity. Therefore, securing the data and devices becomes challenging… More >

  • Open Access

    ARTICLE

    Smartphone-Based Wi-Fi Analysis for Bus Passenger Counting

    Mohammed Alatiyyah*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 875-907, 2024, DOI:10.32604/cmc.2024.047790

    Abstract In the contemporary era of technological advancement, smartphones have become an indispensable part of individuals’ daily lives, exerting a pervasive influence. This paper presents an innovative approach to passenger counting on buses through the analysis of Wi-Fi signals emanating from passengers’ mobile devices. The study seeks to scrutinize the reliability of digital Wi-Fi environments in predicting bus occupancy levels, thereby addressing a crucial aspect of public transportation. The proposed system comprises three crucial elements: Signal capture, data filtration, and the calculation and estimation of passenger numbers. The pivotal findings reveal that the system demonstrates commendable accuracy in estimating passenger counts… More >

  • Open Access

    ARTICLE

    Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques

    Ahsan Wajahat1, Jingsha He1, Nafei Zhu1, Tariq Mahmood2,3, Tanzila Saba2, Amjad Rehman Khan2, Faten S. Alamri4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 651-673, 2024, DOI:10.32604/cmc.2024.047530

    Abstract The growing usage of Android smartphones has led to a significant rise in incidents of Android malware and privacy breaches. This escalating security concern necessitates the development of advanced technologies capable of automatically detecting and mitigating malicious activities in Android applications (apps). Such technologies are crucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world. Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitations they require substantial computational resources and are prone to a high frequency of false positives. This means that while attempting to… More >

  • Open Access

    ARTICLE

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

    Parth Khandelwal1, Harshit2, Indranil Manna1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1727-1755, 2024, DOI:10.32604/cmc.2024.042752

    Abstract Metallic alloys for a given application are usually designed to achieve the desired properties by devising experiments based on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises. However, the influence of process parameters and material properties is often non-linear and non-colligative. In recent years, machine learning (ML) has emerged as a promising tool to deal with the complex interrelation between composition, properties, and process parameters to facilitate accelerated discovery and development of new alloys and functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles, to design novel copper alloys for achieving… More > Graphic Abstract

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding an accuracy of 61.56%. The… More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization of… More >

  • Open Access

    REVIEW

    Review of Collocation Methods and Applications in Solving Science and Engineering Problems

    Weiwu Jiang1, Xiaowei Gao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 41-76, 2024, DOI:10.32604/cmes.2024.048313

    Abstract The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations. This paper provides a comprehensive review of collocation methods and their applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The merits of the collocation method can be attributed to the need for element mesh, simple implementation, high computational efficiency, and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method. Beginning with the fundamental principles of the collocation method, the discretization process in the continuous domain is elucidated, and how… More >

  • Open Access

    ARTICLE

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

    Zun-Di Huang1, Zhen-Bin Zhou1,2,3, Ning Chang1, Zheng-Wei Chen2,3,*, Su-Mei Wang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 975-996, 2024, DOI:10.32604/cmes.2024.047664

    Abstract The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics. Therefore, this paper uses an improved delayed detached eddy simulation (IDDES) method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds. The effects of marshaling lengths (varying from 3-car to 8-car groups) on the train’s aerodynamic performance, surface pressure, and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes (N-S) equations. The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle… More > Graphic Abstract

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

Displaying 1-10 on page 1 of 826. Per Page